scholarly journals Mineralogical and geochemical changes in conglomerate reservoir rocks induced by CO2 influx at Mihályi-Répcelak natural analogue, NW-Hungary

2021 ◽  
Vol 80 (23) ◽  
Author(s):  
Viktória Forray ◽  
Csilla Király ◽  
Attila Demény ◽  
Dóra Cseresznyés ◽  
Csaba Szabó ◽  
...  

AbstractA temporary solution to massive anthropogenic CO2 emissions can be the capture of industrial CO2 from flue gas and sequestering it in geological formations. For safe and effective storage of CO2, interaction processes in the rock-pore fluid–CO2 system should be known. Investigation of natural CO2 accumulations provides valuable examples to what physical and chemical effects could be expected during CO2 influx at future CO2 storage sites. One of the key controlling factors of the processes occurring in natural CO2 reservoirs is the lithology of the storage rocks, which is primarily determined by the formation conditions of these rocks. In this respect, the lithologies of individual CO2 accumulation areas influence the processes between the host rock, the pore fluid, and the CO2 in different ways. In the current study, we focus on a well-studied natural CO2 storage reservoir, namely the Mihályi-Répcelak area, NW Hungary. We provide insight into the so far unstudied conglomerate reservoirs that represent a stratigraphically deeper reservoir unit with significantly different lithology and pore water compositions compared to the sandstone reservoirs. Our results indicate that dawsonite /NaAlCO3(OH)2/ formation also affected the conglomerate reservoirs, which indicates that at least part of the CO2 could be trapped in mineral form. An important role of salinity in reducing the CO2 mineral trapping capacity of the storage system is also demonstrated. Furthermore, H isotope analysis of diagenetic kaolinite was applied to trace the origin of the pore water that was present during the rock formation. Based on the data, dawsonite formation was induced by the flux of meteoric water that infiltrated during a warm and humid period and mixed with ascending CO2.

2019 ◽  
Vol 61 (1) ◽  
pp. 52-74
Author(s):  
N. E. Savva ◽  
A. V. Volkov ◽  
A. A. Sidorov ◽  
E. E. Kolova ◽  
K. Yu. Murashov

As a potentially large Ag-Au epithermal deposit, Primorskoye comprises the following three areas: Kholodny, Spiridonych, and Teply. This deposit is located in the Omsukchan district of the Magadan Region, where similar deposits, including Dukat, Lunnoye, Goltsovoye, Arylakh, Tidit, and Perevalnoye, have developed. The deposit can be attributed to the Kalalagian volcano-tectonic depression and is localized in a flat-lying rock mass in the Late Cretaceous ignimbrites and rhyolites having thicknesses of greater than 700 m, which is cut through by numerous dykes of medium and major composition. According to the drilling data, the solid mass of leucocratic granites is located in deposits at a depth of 400–500 m with outcrops in the northeastern part of the ore field. The presence of Bi-containing galena and matildite, the availability of mid and high temperature facies of metasomatites (epidote and actinolite), and the specific physical and chemical conditions during the formation of the epithermal Ag-Au ores indicate the intrusive position above and the role of granitoids as generators of high temperature magmatic fluids, which introduced Bi and heated the rocks enclosing the mineralization. The geochemical features of the ores are well correlated with their mineral compositions. The high concentrations of Mn and Ag, elevated concentration of Au, low concentrations of Cu, Pb, Zn, Sb, As, Bi, and Te, low sum of REE, and negative Eu- and positive Се-anomalies were observed. The high values of the Te/Se, Sr/Ba, Y/Ho, and U/Th indicators in the ores are associated with the deposit location in the zone of granitoid massif effect. Further, the physical and chemical parameters of ore formation in the Teply area are unusual and are characterized by high temperatures, low concentrations of salts, and fluid density, which are indicative of the typical “dry steam” conditions. The obtained results allow the Primorskoye epithermal deposit to be attributed to the intermediate class. The information present in the article is practically valuable for the regional forecast and metallogenic developments as well as for searching and assessing the epithermal Ag-Au deposits.


1989 ◽  
Vol 23 (4) ◽  
pp. 443-450 ◽  
Author(s):  
G. Roberts ◽  
H. McCormack ◽  
V. Ketharanathan ◽  
D. G. Macleish ◽  
P. L. Field ◽  
...  

2015 ◽  
Vol 120 (1) ◽  
pp. 87-105 ◽  
Author(s):  
Gang Luo ◽  
Peter B. Flemings ◽  
Michael R. Hudec ◽  
Maria A. Nikolinakou
Keyword(s):  

2004 ◽  
Vol 49 (3) ◽  
pp. 165-172 ◽  
Author(s):  
M. Yazgan ◽  
A. Tanik

The study covers the investigation of pesticides in terms of consumption, toxicological classification and various intrinsic physical and chemical properties like DT50, KOC, GUS, solubility that describe the important mechanisms prevailing in soil, namely persistence and mobility. These mechanisms help to estimate the transportation pathways of pesticides on soil till they reach the receiving water after being applied on land. Classification is done in three groups, those likely to appear in surface flow, those that appear in groundwater and those that present transient conditions. Such an approach that also takes into account toxicological levels and annual consumption values of pesticides will act as a tool to prepare the priority list of pesticides that need special care during their transportation. The fate of pesticides is a difficult task to solve, however, such a methodology, puts forth a rough estimate on their behavior in spite of uncertainties in many of the parameters describing mechanisms like persistence and mobility. The agricultural areas of two watersheds of Istanbul are selected as target areas to describe the approach, which is also checked with another approach estimating pesticide pollution potential that considers various other properties of pesticides. Almost similar findings are depicted with 85% proximity. The methodology presented in the paper illustrates and emphasizes the significant role of pesticide properties in determining their fate in soil after being applied.


1973 ◽  
Vol 51 (21) ◽  
pp. 3605-3619 ◽  
Author(s):  
C. Willis ◽  
R. A. Back

Preparation of di-imide by passing hydrazine vapor through a microwave discharge yields mixtures with NH3 containing typically about 15% N2H2, estimated from the gases evolved on decomposition. The behavior of the mixture (which melts at −65 °C) on warming from −196 to −30 °C suggests a strong interaction between the components. Measurements of magnetic susceptibility and e.p.r. experiments showed that N2H2 is not strongly paramagnetic, which with other observations points to a singlet rather than a triplet ground-state.Di-imide can be vaporized efficiently, together with NH3, by rapid warming, and the vapor is surprisingly long-lived, with a typical half-life of several minutes at room temperature. The near-u.v. (3200–4400 Å) absorption spectrum of the vapor was photographed; it shows well-defined but diffuse bands, with εmax = 6(± 3) at 3450 Å.Di-imide decomposes at room temperature in two ways:[Formula: see text][Formula: see text]Formation of NH3 was not observed but cannot be ruled out. The decomposition of the vapor is complicated by a sizeable and variable decomposition that occurs rapidly during the vaporization. The stoichiometry of this and the vapor-phase decomposition depends on total pressure and di-imide concentration. The kinetics of the decomposition of the vapor were studied from 22 to 200 °C by following the disappearance of N2H2 by absorption of light at 3450 Å, or the formation of N2H4 by absorption at 2400 Å, and by mass spectrometry. The kinetics are complex and can be either first- or second-order, or mixed, depending on surface conditions. The effect of olefin additives on the decomposition was studied, and is also complex.Mechanisms for the decomposition are discussed, including the possible role of trans-cis isomerization. The relatively long lifetime found for di-imide in the gas phase suggests that it may be an important intermediate in many reactions of hydronitrogen systems.


Author(s):  
Ramakoteswara Rao N ◽  
Kranthi kiran Reddy E ◽  
Leena Gahane ◽  
SV Ranganayakulu

Nano technology is the multi disciplinary science and technology, which has emerged as new science exploiting specific phenomena and direct manipulation of materials on nanoscale. Nanotechnology deals with the physical, chemical, and biological properties of structures and their parts at nanoscale dimensions. It's established on the concept by creating functional structures by controlling corpuscles and molecules on a one-by-one basis by different physical and chemical synthesis methods. Developments in materials science and, nano biotechnology is especially forestalled to provide elevates in dental sciences and initiations in oral health-related diagnostic and therapeutical methods. Keywords: Nano Science, dentistry, Nanocomposite, Nanorobots, Nanomaterials.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1700
Author(s):  
Ana L. Becerril-Sánchez ◽  
Baciliza Quintero-Salazar ◽  
Octavio Dublán-García ◽  
Héctor B. Escalona-Buendía

Honey has been employed since antiquity due to its sensory, nutritional, and therapeutic properties. These characteristics are related to its physical and chemical composition. For example, phenolic compounds are substances that can determine antioxidant activity, as well as sensory characteristics, and can be employed as biomarkers of floral and geographical origin. This has generated a growing interest in the study of phenolic compounds and their influence in the intrinsic properties of this beekeeping product. This review aims to summarize, analyze, and update the status of the research that demonstrates the role of phenolic compounds in antioxidant activity, botanical-geographical origin, and the sensory characteristics of honey. These phenolic compounds, according to various results reported, have great relevance in honey’s biological and functional activity. This leads to research that will link phenolic compounds to their floral, geographical, productive, and territorial origin, as well as some sensory and functional characteristics.


2014 ◽  
Vol 360 ◽  
pp. 59-66
Author(s):  
E. Vallejos ◽  
V. Galeano ◽  
L. Gómez ◽  
J.L. Izquierdo ◽  
J.F. Montoya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document