scholarly journals The specialized thoracic skeletomuscular system of the myrmecophile Claviger testaceus (Pselaphinae, Staphylinidae, Coleoptera)

Author(s):  
Xiao-Zhu Luo ◽  
Paweł Jałoszyński ◽  
Alexander Stoessel ◽  
Rolf Georg Beutel

AbstractExternal and internal structures of the thorax of the myrmecophile beetle Claviger testaceus (Clavigeritae, Pselaphinae) were examined and documented with state-of-the-art visualization techniques. Following a general trend in the omaliine lineage (Staphylinidae), the skeletal elements of the pro- and pterothorax in Claviger reach a maximum degree of compactness, with largely reduced inter- and intrasegmental sutures and skeletal elements linked with the flight apparatus. The musculature, especially metathoracic direct and indirect flight muscles, also shows a high degree of reduction. Two forms of wings were found among individuals of C. testaceus, both non-functional and representing an advanced stage of reduction. However, that wing vestiges are still present and the metanotum, only slightly reduced, suggests that loss of flight in this species is likely the result of a young evolutionary process. Several structures are linked with myrmecophilous habits: small body size facilitates transportation of beetles by ant workers and makes it easier to move inside nest tunnels; the remarkably compact body and mechanically robust appendages make the beetles less vulnerable to attacks by ant mandibles; the improved elytral interlocking mechanism and unusually expanded epipleura enhance the protection of vulnerable dorsal parts of the pterothorax and anterior abdomen; and glands associated with trichomes on the posterolateral elytral angle produce secretions attractive for ants. Various modifications of the thorax and anterior abdomen lead to an optimization of intimate associations with ants. The morphological syndrome enabling these beetles to cope with life in ant colonies evolved in several steps. This is suggested by an increasing solidification of the thoracic skeleton in related non-myrmecophilous groups and also by less modified related clavigerites;for instance, ant-associated tropical species are still able to fly.

2012 ◽  
Vol 79 (1) ◽  
pp. 18-31 ◽  
Author(s):  
Sylvia M. Lehner ◽  
Lea Atanasova ◽  
Nora K. N. Neumann ◽  
Rudolf Krska ◽  
Marc Lemmens ◽  
...  

ABSTRACT Due to low iron availability under environmental conditions, many microorganisms excrete iron-chelating agents (siderophores) to cover their iron demands. A novel screening approach for the detection of siderophores using liquid chromatography coupled to high-resolution tandem mass spectrometry was developed to study the production of extracellular siderophores of 10 wild-type Trichoderma strains. For annotation of siderophores, an in-house library comprising 422 known microbial siderophores was established. After 96 h of cultivation, 18 different iron chelators were detected. Four of those (dimerum acid, fusigen, coprogen, and ferricrocin) were identified by measuring authentic standards. cis -Fusarinine, fusarinine A and B, and des-diserylglycylferrirhodin were annotated based on high-accuracy mass spectral analysis. In total, at least 10 novel iron-containing metabolites of the hydroxamate type were found. On average Trichoderma spp. produced 12 to 14 siderophores, with 6 common to all species tested. The highest number (15) of siderophores was detected for the most common environmental opportunistic and strongly fungicidic species, Trichoderma harzianum , which, however, did not have any unique compounds. The tropical species T. reesei had the most distinctive pattern, producing one unique siderophore ( cis -fusarinine) and three others that were present only in T. harzianum and not in other species. The diversity of siderophores did not directly correlate with the antifungal potential of the species tested. Our data suggest that the high diversity of siderophores produced by Trichoderma spp. might be the result of further modifications of the nonribosomal peptide synthetase (NRPS) products and not due to diverse NRPS-encoding genes.


2021 ◽  
Vol 13 (21) ◽  
pp. 4270
Author(s):  
Antonio J. Ortiz-Villarejo ◽  
Luís-M. Gutiérrez Soler

The difficulty of obtaining funding often places the continuity of research projects at risk, forcing researchers to resort to low-cost methodologies. Such methodologies sometimes require a high degree of technical knowledge which, in many cases, poses an insurmountable obstacle to the development of a project. This article shows a low-cost, easy-way methodology for diachronically analysing terrain in search of archaeological evidence on different scales (micro and semi-micro) in both already known and new archaeological sites through the analysis of orthophotographs taken with UAVs, the DEMs generated from them, and public LiDAR data. It allows researchers with small budgets but with a basic knowledge of GIS and photogrammetry to undertake some aspects of their project without necessarily having to call on the assistance or support of specialists. Thanks to this methodology, the researcher will be able to continue until they are able to obtain the funding that will enable them to take their research further, with specialists. This article presents the first conclusions obtained after applying the proposed methodology at the Giribaile (Vilches, Spain) archaeological site—a site of interest in its territory which possibly functioned as an advance defensive post for the town, a hypothesis based on the towers and numerous internal structures that have been identified.


2020 ◽  
Vol 1 (89) ◽  
pp. 52-58
Author(s):  
Alicja Damasiewicz ◽  
Małgorzata Leśniewska

For the first time in Poland, centipedes of a tropical species Tygarrup javanicus (Attems, 1907) (Geophilomorpha) were found in the hothouses with the tropical vegetation of the Botanical Garden in Wrocław. This Asian species has increasingly been reported from European greenhouses. Its spread is facilitated, among other factors, by small body size and parthenogenesis. In Poland one should also expect other exotic species which have already been found in neighbouring countries.


1965 ◽  
Vol 27 (2) ◽  
pp. 379-393 ◽  
Author(s):  
David S. Smith

The organization of the indirect flight muscle of an aphid (Hemiptera-Homoptera) is described. The fibers of this muscle contain an extensive though irregularly disposed complement of T system tubules, derived as open invaginations from the cell surface and from the plasma membrane sheaths accompanying the tracheoles within the fiber. The sarcoplasmic reticulum is reduced to small vesicles applied to the T system surfaces, the intermembrane gap being traversed by blocks of electron-opaque material resembling that of septate desmosomes. The form and distribution of the T system and sarcoplasmic reticulum membranes in flight muscles of representatives of the major insect orders is described, and the extreme reduction of the reticulum cisternae in all asynchronous fibers (to which group the aphid flight muscle probably belongs), and the high degree of their development in synchronous fibers is documented and discussed in terms of the contraction physiology of these muscle cells.


2002 ◽  
Vol 1 (1) ◽  
pp. 20-34 ◽  
Author(s):  
Daniel A. Keim ◽  
Ming C. Hao ◽  
Umesh Dayal ◽  
Meichun Hsu

Simple presentation graphics are intuitive and easy-to-use, but show only highly aggregated data presenting only a very small number of data values (as in the case of bar charts) and may have a high degree of overlap occluding a significant portion of the data values (as in the case of the x-y plots). In this article, the authors therefore propose a generalization of traditional bar charts and x-y plots, which allows the visualization of large amounts of data. The basic idea is to use the pixels within the bars to present detailed information of the data records. The so-called pixel bar charts retain the intuitiveness of traditional bar charts while allowing very large data sets to be visualized in an effective way. It is shown that, for an effective pixel placement, a complex optimization problem has to be solved. The authors then present an algorithm which efficiently solves the problem. The application to a number of real-world e-commerce data sets shows the wide applicability and usefulness of this new idea, and a comparison to other well-known visualization techniques (parallel coordinates and spiral techniques) shows a number of clear advantages.


1996 ◽  
Vol 12 (4) ◽  
pp. 535-560 ◽  
Author(s):  
Jean-Marc Thiollay

ABSTRACTA survey of the diurnal raptor community (46 resident species) at five altitudinal levels from 100 to 4600 m was made in Venezuela using 106 1-km2sample quadrats and then compared with similar censuses (211 plots) in southwestern Colombia and eastern Ecuador. Six habitat types were defined and habitat preferences were measured from every encountered birds and from the association between individual abundances and the coverage of habitat types on plots. The overall species richness steeply declined with elevation in all three countries. The raptor community consisted mostly of tropical species that rapidly decreased in both abundance and frequency of occurrence with elevation. A small set of subtropical-temperate forest specialists partly replaced them at mid-elevation and only two species occurred in the paramo of Venezuela, against 5–7 in the other countries. Although originally the gradients were probably almost completely covered with forest, a large part of the raptor community is now composed of grassland species, three of them extending from the lowlands to the tree line. The relative impoverishment of the Venezuelan community, especially at upper levels, is attributed to a peninsular effect at the narrow extreme northern tip of the Andes and perhaps also to former forest fragmentation. Within some species, different subspecies had discrete altitudinal distributions and interspecific competition may explain differences in the range extension of some species between countries. Today, however, accelerating deforestation may result in a severe decline of forest-interior species and a probable reduction in the altitudinal range of at least some of them. Species naturally associated with forest gaps or edges usually tolerate a high degree of forest fragmentation and degradation but only one of them may become abundant in heavily human-altered woodlands. Few grassland specialists have become more widely distributed in the increasingly deforested landscapes.


Author(s):  
C. L. Zhou ◽  
Y. F. Yang ◽  
M. H. Yao ◽  
X. Y. Zhong ◽  
C. M. Liao

Abstract. This paper was aimed at analyzing and verifying each of the parameter settings in the computing process of GAMIT. The optimum number of introduced auxiliary station was determined, and models for the weighted mean temperature of the atmosphere in Guilin were established. Under the underlying strategy of introducing all the respective most optimum criteria, the precipitable water vapor (PWV) was first calculated by using the data provided by the CORS base station in Guilin, before analyzing and comparing it with the PWV and actual precipitation obtained from the sounding data. According to the result, a high degree of coincidence was discovered among the general trend of the following three indicators: the calculated PWV, as well as the PWV and actual precipitation acquired using the sounding data, hence offering a significant value for reference in terms of extreme weather warning.


2021 ◽  
Vol 8 ◽  
Author(s):  
Maria Wanna Figueiredo Sena Macedo ◽  
Nicolau Brito da Cunha ◽  
Juliana Araújo Carneiro ◽  
Rosiane Andrade da Costa ◽  
Sergio Amorim de Alencar ◽  
...  

Oceanic environments are one of the largest sources of bioactive molecules, due to the high degree of biodiversity and the innumerable ecological relationships established between macro and microorganisms found in the different ecosystems of these complex environments. Marine organisms are being studied increasingly because they are considered important producers of biologically active peptides. Peptides extracted from marine sources have different functions and structures, when compared to peptides isolated from terrestrial sources, considering the different adaptive pressures undergone by these organisms throughout the evolutionary process. Most bioactive compounds isolated from marine environments are obtained from symbiont microorganisms. Of these microorganisms, bacteria are an important source of bioactive peptides, isolated by metagenomic studies from complex gene networks expressed under marine conditions. Several peptides have been shown to have biotechnological properties such as antimicrobial, antitumor, antihypertensive, anticoagulant, anti-fouling, and antioxidant activity and can be used in the pharmaceutical and food industries. This review article aims to provide an overview of peptides of biotechnological importance, isolated from different phyla of marine organisms, examining the relationship between structure and function of some of these peptides, as well as the ways of extracting, purifying and prospecting new peptides by traditional methods of isolation or sequence analysis in databases. It also intends to list the peptides that are already being produced and used by the industry, in its various branches, and their current state in the market and in clinical tests.


2016 ◽  
Vol 87 (4) ◽  
pp. 252-264 ◽  
Author(s):  
Kara E. Yopak ◽  
Vitaly L. Galinsky ◽  
Rachel M. Berquist ◽  
Lawrence R. Frank

A true cerebellum appeared at the onset of the chondrichthyan (sharks, batoids, and chimaerids) radiation and is known to be essential for executing fast, accurate, and efficient movement. In addition to a high degree of variation in size, the corpus cerebellum in this group has a high degree of variation in convolution (or foliation) and symmetry, which ranges from a smooth cerebellar surface to deep, branched convexities and folds, although the functional significance of this trait is unclear. As variation in the degree of foliation similarly exists throughout vertebrate evolution, it becomes critical to understand this evolutionary process in a wide variety of species. However, current methods are either qualitative and lack numerical rigor or they are restricted to two dimensions. In this paper, a recently developed method for the characterization of shapes embedded within noisy, three-dimensional data called spherical wave decomposition (SWD) is applied to the problem of characterizing cerebellar foliation in cartilaginous fishes. The SWD method provides a quantitative characterization of shapes in terms of well-defined mathematical functions. An additional feature of the SWD method is the construction of a statistical criterion for the optimal fit, which represents the most parsimonious choice of parameters that fits to the data without overfitting to background noise. We propose that this optimal fit can replace a previously described qualitative visual foliation index (VFI) in cartilaginous fishes with a quantitative analog, i.e. the cerebellar foliation index (CFI). The capability of the SWD method is demonstrated in a series of volumetric images of brains from different chondrichthyan species that span the range of foliation gradings currently described for this group. The CFI is consistent with the qualitative grading provided by the VFI, delivers a robust measure of cerebellar foliation, and can provide a quantitative basis for brain shape characterization across taxa.


Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 173
Author(s):  
Francisco J. Serrano ◽  
Mireia Costa-Pérez ◽  
Guillermo Navalón ◽  
Alberto Martín-Serra

From a functional standpoint, the humerus is a key element in the skeleton of vertebrates as it is the forelimb’s bone that connects with the pectoral girdle. In most birds, the humerus receives both the forces exerted by the main flight muscles and the aerodynamical stresses exerted upon the wing during locomotion. Despite this functional preeminence, broad scale studies of the morphological disparity of the humerus in the crown group of birds (Neornithes) are lacking. Here, we explore the variation in shape of the humeral outline in modern birds and its evolutionary relationship with size and the evolution of different functional regimes, including several flight strategies, wing propelled diving and complete loss of wing locomotory function. Our findings suggest that most neornithines evolved repeatedly towards a general humeral morphology linked with functional advantages related with more efficient flapping. Lineages evolving high-stress locomotion such as hyperaeriality (e.g., swifts), hovering (e.g., hummingbirds) and wing-propelled diving (e.g., penguins) greatly deviate from this general trend, each exploring different morphologies. Secondarily flightless birds deviate to a lesser degree from their parent clades in humeral morphology likely as a result of the release from constraints related with wing-based locomotion. Furthermore, these taxa show a different allometric trend that flighted birds. Our results reveal that the constraints of aerial and aquatic locomotion are main factors shaping the macroevolution of humeral morphology in modern birds.


Sign in / Sign up

Export Citation Format

Share Document