scholarly journals Development of shelf-stable, ready-to-eat (RTE) shrimps (Litopenaeus vannamei) using water activity lowering agent by response surface methodology

2011 ◽  
Vol 50 (6) ◽  
pp. 1137-1143 ◽  
Author(s):  
Hongbo Cui ◽  
Changhu Xue ◽  
Yong Xue ◽  
Wei Su ◽  
Zhaojie Li ◽  
...  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
P. Saravana Pandian ◽  
S. Sindhanai Selvan ◽  
A. Subathira ◽  
S. Saravanan

Abstract Waste generated from industrial processing of seafood is an enormous source of commercially valuable proteins. One among the underutilized seafood waste is shrimp waste, which primarily consists of head and carapace. Litopenaeus vannamei (L. vannamei) is the widely cultivated shrimp in Asia and contributes to 90 % of aggregate shrimp production in the world. This work was focused on extraction as well as purification of value-added proteins from L. vannamei waste in a single step aqueous two phase system (ATPS). Polyethylene glycol (PEG) and trisodium citrate system were chosen for the ATPS owing to their adequate partitioning and less toxic nature. Response surface methodology (RSM) was implemented for the optimization of independent process variables such as PEG molecular weight (2000 to 6000), pH (6 to 8) and temperature (25 to 45 °C). The results obtained from RSM were further validated using a Multi-objective genetic algorithm (MGA). At the optimized condition of PEG molecular weight 2000, pH 8 and temperature 35 °C, maximum partition coefficient and protein yield were found to be 2.79 and 92.37 %, respectively. Thus, L. vannamei waste was proved to be rich in proteins, which could be processed industrially through cost-effective non-polluting ATPS extraction, and RSM coupled MGA could be a potential tool for such process optimization.


2016 ◽  
Vol 21 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Saiah Djebbour Omar ◽  
Je-Eun Yang ◽  
Sang-Cheol Oh ◽  
Dae-Wook Kim ◽  
Yang-Bong Lee

Food Research ◽  
2021 ◽  
Vol 5 (5) ◽  
pp. 95-104
Author(s):  
D. Hunaefi ◽  
Rahmawati R. ◽  
D. Saputra ◽  
R.R. Maulani ◽  
T. Muhandri

This research aimed to optimize the tray dryer temperature and time of white corn flour culture by Response Surface Methodology (RSM). There were two cultures used in this research, namely Amylolytic Culture (AC) and Complete Culture (CC). AC consisted of Penicillium citrinum, Aspergillus niger, Acremonium strictum, and Candida famata, while CC consisted of Penicillium chrysogenum, Penicillium citrinum, Aspergillus niger, Rhizopus stolonifer, Rhizopus oryzae, Fusarium oxysporum, Acremonium strictum, Candida famata, Kodamaea ohmeri and Candida krusei/incospicua. The independent variables in this study were drying temperature and time, where the quality indicators used were total viability of mold and yeast, water content, water activity, and pH. This research used a factor response surface methodology. Data were analyzed by ANOVA with an α level of 95%. The result of this research showed that the optimum drying process for AC starter was 40°C for 10 hrs, with characteristic response viability 8.8×107 CFU/g, water activity 0.43, water content 8.90%, and pH 4.05. CC starter showed an optimum drying process at 49°C for 4.5 hrs, with characteristic response viability 4.9×107 CFU/g, water activity 0.49, water content 7.02%, and pH 3.95. The optimum tray dryer temperatures and times were achieved for AC and CC starters.


2014 ◽  
Vol 10 (3) ◽  
pp. 481-491
Author(s):  
Vishal Kumar ◽  
Dinesh Rajak ◽  
Alok ◽  
Ajay Kumar Jha ◽  
P. D. Sharma

Abstract Optimization of process variables for ohmic heating (OH) of fish steaks was done by response surface methodology according to Box–Behnken design. The low and high levels of the variables were 3 and 7 min for processing time; 55 and 75 V for applied voltage and 10 and 15 mm for product thickness. Responses studied comprised colour, temperature, hardness, water activity and organoleptic score. It was found that effects of time and applied voltage were significant on all responses. Optimum conditions (desirability = 0.820) obtained by numerical optimization were processing time, 5.75 min; voltage, 75 V and product thickness, 14.4 mm to achieve maximum colour variation, temperature and organoleptic score and lower hardness and water activity. Corresponding to the optimum conditions, the predicted value for temperature was 71.88°C, colour 49.85, hardness 1.125 kg, water activity 0.772 and overall acceptability 7.891.


Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Soulef Benkadri ◽  
Ana Salvador ◽  
Teresa Sanz ◽  
Mohammed Nasreddine Zidoune

Incorporation of xanthan gum and locust bean gum in rice flour supplemented by chickpea flour was used to obtain a good quality of nutritionally enriched biscuit for celiac children. Response surface methodology (RSM) was applied to optimize the levels of xanthan and locust bean gum added to the composite gluten-free flour. Analysis was based on the rheological (hardness and viscoelastic) characteristics of the dough and specific volume, water activity, and hardness of the biscuit. The results revealed that the regression and variance analysis coefficients related to the rheological and physical properties of dough and biscuit under the influence of independent variables were sufficient for an adequate and well-fitted response surface model. Linear terms of variables significantly affect most of the dough and biscuit parameters, where the xanthan gum effect was found to be more pronounced than locust bean gum. Interaction terms showed a significant positive effect on the specific volume of the biscuits and a negative effect on the water activity. However, the interactive effect of gums did not significantly affect the rheological parameters of the dough. Optimized conditions were developed to maximize the specific volume of biscuit and minimize water activity and biscuit hardness, while keeping hardness and viscoelastic properties of the dough in range. Predicted responses were found satisfactory for both rheological and physical characteristics of dough and biscuit.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Chang-Cheng Zhao ◽  
Gui-Hun Jiang ◽  
Jong-Bang Eun

The aim of this study was to investigate the effects of drying temperature (50–70°C) and drying time (3–5 h) on the physical properties and quality of squid-laver snack (SLS) using response surface methodology combined with a synthetic evaluation method to optimize the drying process conditions. Moisture content, water activity, color (L⁎, a⁎, b⁎), shear force, and overall acceptability were evaluated as responses. Increased drying times and higher temperatures significantly reduced the moisture content and water activity of SLS from 9.07% to 4.76% and 0.136 to 0.056, respectively (p<0.05). There was no significant difference in the L⁎ and a⁎ values under different drying conditions. The quadratic effect of temperature and time was observed for the b⁎ value and overall acceptability of SLS. For shear force, a quadratic and interaction term for drying temperature and time on shear force was observed. In conclusion, the recommended optimal hot air-drying conditions for SLS are temperature and time of 70°C and 3 h, respectively.


Sign in / Sign up

Export Citation Format

Share Document