scholarly journals Optimization of Drying Process for Squid-Laver Snack by a Combined Method of Fuzzy Synthetic and Response Surface Methodology

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Chang-Cheng Zhao ◽  
Gui-Hun Jiang ◽  
Jong-Bang Eun

The aim of this study was to investigate the effects of drying temperature (50–70°C) and drying time (3–5 h) on the physical properties and quality of squid-laver snack (SLS) using response surface methodology combined with a synthetic evaluation method to optimize the drying process conditions. Moisture content, water activity, color (L⁎, a⁎, b⁎), shear force, and overall acceptability were evaluated as responses. Increased drying times and higher temperatures significantly reduced the moisture content and water activity of SLS from 9.07% to 4.76% and 0.136 to 0.056, respectively (p<0.05). There was no significant difference in the L⁎ and a⁎ values under different drying conditions. The quadratic effect of temperature and time was observed for the b⁎ value and overall acceptability of SLS. For shear force, a quadratic and interaction term for drying temperature and time on shear force was observed. In conclusion, the recommended optimal hot air-drying conditions for SLS are temperature and time of 70°C and 3 h, respectively.

This report is to investigate the effects of process variables on the solid gain, water loss using the Response surface methodology (RSM). The ginger was Osmo-dehydrated using process variables such has blanching time, the temperature for an osmotic solution, immersion, & convective drying temperature .response variables tested were solid gain and water loss. The blanching is done to inactivate the enzyme and to increase permeability in ginger candy. The optimum Osmo-convective process conditions for a maximum solid gain, water loss, and overall acceptability of honey-ginger candy were 8.39 min blanching time, 39˚Csolution temperature, 94 min immersion time, and 70˚C convective drying temperature.


2021 ◽  
Vol 9 (1) ◽  
pp. 66
Author(s):  
Desak Agung Hepi ◽  
Ni Luh Yulianti ◽  
Yohanes Setiyo

Suhu pengeringan dan ketebalan irisan merupakan dua hal yang mempengaruhi proses pengeringan jahe merah. Penelitian dirancang dengan tujuan untuk mendapatkan kombinasi suhu pengeringan dan ketebalan irisan optimum melalui Response Surface Methodology (RSM), serta memperoleh model matematika untuk memprediksi kadar air, aktivitas air, kadar abu dan energi panas penguapan. Pengujian dilakukan untuk mengetahui pengaruh suhu dan ketebalan irisan terhadap respon kadar air, aktivitas air, kadar abu dan energi panas penguapan. Pengolahan data menggunakan aplikasi Design Expert ® 12. Hasil penelitian menunjukkan model linier untuk memprediksi respon kadar air dan kadar abu. Model kuadratik untuk memprediksi respon aktivitas air dan energi panas penguapan. Hasil verifikasi model menunjukkan kombinasi suhu pengeringan dan ketebalan irisan optimum terpilih adalah 67,30C dan 3 mm. Proses pengeringan dengan kombinasi suhu pengeringan dan ketebalan irisan optimum menghasilkan nilai aktual aktivitas air 0,393 aw, kadar air 9,877%, kadar abu 3,513% dan energi panas penguapan sebesar 68,354 kJ/Jam. Respon dari kombinasi suhu pengeringan dan ketebalan irisan optimum terpilih dapat memenuhi keinginan sesuai kriteria dengan nilai desirability 81,3%.   Drying temperature and thickness of slices are two things that affect the drying process of red ginger. The research was designed with the aim of obtaining a combination of drying temperature and optimum slice thickness through the Response Surface Methodology (RSM), as well as obtaining mathematical models to predict water content, water activity, ash content and evaporation heat energy. Testing was conducted to determine the effect of the temperature and thickness of the slices on the response of water content, water activity, ash content and evaporation heat energy. Data processing using design expert application ® 12. The results showed linear models to predict the response of water levels and ash levels. Quadratic models to predict the response of water activity and evaporation heat energy. Model verification results show the combination of drying temperature and optimum slice thickness selected is 67.30C and 3 mm. The drying process with a combination of drying temperature and optimum slice thickness resulted in an actual water activity value of 0.393 aw, water content of 9.877%, ash content of 3.513% and evaporation heat energy of 68,354 kJ/h. The response of the combination drying temperature and thickness of selected optimum slices can meet the wishes according to the criteria with a desirability value of 81.3%.


2011 ◽  
Vol 396-398 ◽  
pp. 1126-1131
Author(s):  
Yao Xuan Zhang ◽  
Lu Yao Zhang ◽  
Qiu Jie Zhang ◽  
Hou He Chen

The main factors affecting the drying process of RDX and the optimum drying conditions were investigated through single factor test and response surface methodology, the optimal drying conditions were gained. The results show that moisture content, vacuum, temperature are important factors in the drying process of RDX, the significance of main influencing factors is: temperature> vacuum> moisture content, the suggested drying condition is: 80°C for temperature, 0.05MPa for vacuum, 10% for moisture content.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Sana M’hir ◽  
Kais Rtibi ◽  
Asma Mejri ◽  
Manel Ziadi ◽  
Hajer Aloui ◽  
...  

The aim of this study was to develop a novel kefir beverage using date syrup, whey permeate, and whey. The levels of the kefir grain inoculum (2–5% w/v), fruit syrup (10–50% w/v), and whey permeate (0–5% w/v) on pH, total phenolic content, antioxidant activity, lactic acid bacteria and yeast counts, and overall acceptability were investigated using central composite design. The use of response surface methodology allowed us to obtain a formulation with acceptable organoleptic properties and high antioxidant activities. The obtained beverages had total phenolic content, % DPPH scavenging activity, and overall acceptability ranging from 24 to 74 mg GAE/mL, from 74.80 to 91.37 mg GAE/mL, and from 3.50 to 6 mg GAE/mL (based on a 1 to 9 preference scale), respectively. Date syrup of 36.76% (w/v), whey permeates of 2.99%, and kefir grains inoculum size of 2.08% were the optimized process conditions achieved.


2013 ◽  
Vol 803 ◽  
pp. 3-8 ◽  
Author(s):  
Yong Gang Zuo ◽  
Li Bo Zhang ◽  
Bing Guo Liu ◽  
Jin Hui Peng ◽  
Ai Yuan Ma

Abstract: The technology that CuCl residue from Zn hydrometallurgy was dried by microwave heating was studied. The influence of the drying duration, drying temperature and material thickness on dehydration rate was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for drying CuCl residue have been identified to be an drying temperature of 80°C, drying duration of 11 min and material thickness of 16 mm. The optimum conditions resulted in an CuCl residue with moisture content of 4.97%, which could ensure remove chlorine of CuCl residue by microwave roasting.


Food Research ◽  
2021 ◽  
Vol 5 (5) ◽  
pp. 95-104
Author(s):  
D. Hunaefi ◽  
Rahmawati R. ◽  
D. Saputra ◽  
R.R. Maulani ◽  
T. Muhandri

This research aimed to optimize the tray dryer temperature and time of white corn flour culture by Response Surface Methodology (RSM). There were two cultures used in this research, namely Amylolytic Culture (AC) and Complete Culture (CC). AC consisted of Penicillium citrinum, Aspergillus niger, Acremonium strictum, and Candida famata, while CC consisted of Penicillium chrysogenum, Penicillium citrinum, Aspergillus niger, Rhizopus stolonifer, Rhizopus oryzae, Fusarium oxysporum, Acremonium strictum, Candida famata, Kodamaea ohmeri and Candida krusei/incospicua. The independent variables in this study were drying temperature and time, where the quality indicators used were total viability of mold and yeast, water content, water activity, and pH. This research used a factor response surface methodology. Data were analyzed by ANOVA with an α level of 95%. The result of this research showed that the optimum drying process for AC starter was 40°C for 10 hrs, with characteristic response viability 8.8×107 CFU/g, water activity 0.43, water content 8.90%, and pH 4.05. CC starter showed an optimum drying process at 49°C for 4.5 hrs, with characteristic response viability 4.9×107 CFU/g, water activity 0.49, water content 7.02%, and pH 3.95. The optimum tray dryer temperatures and times were achieved for AC and CC starters.


2014 ◽  
Vol 10 (3) ◽  
pp. 481-491
Author(s):  
Vishal Kumar ◽  
Dinesh Rajak ◽  
Alok ◽  
Ajay Kumar Jha ◽  
P. D. Sharma

Abstract Optimization of process variables for ohmic heating (OH) of fish steaks was done by response surface methodology according to Box–Behnken design. The low and high levels of the variables were 3 and 7 min for processing time; 55 and 75 V for applied voltage and 10 and 15 mm for product thickness. Responses studied comprised colour, temperature, hardness, water activity and organoleptic score. It was found that effects of time and applied voltage were significant on all responses. Optimum conditions (desirability = 0.820) obtained by numerical optimization were processing time, 5.75 min; voltage, 75 V and product thickness, 14.4 mm to achieve maximum colour variation, temperature and organoleptic score and lower hardness and water activity. Corresponding to the optimum conditions, the predicted value for temperature was 71.88°C, colour 49.85, hardness 1.125 kg, water activity 0.772 and overall acceptability 7.891.


Author(s):  
J. Isa ◽  
A. P. Olalusi

Introduction: Foam mat drying involves the change of agricultural material from a high moisture content level to a stable foam which is achieved by moisture reduction mechanism. Aim: In this study, foam-mat drying process of watermelon was optimized using response surface methodology. Foaming conditions (carboxyl methyl cellulose and egg albumen) and the drying system parameters (air velocity and air temperature) were optimized using response surface methodology. Methodology: To evaluate the drying behaviour, the drying experiment was designed using design expert software using a central composite design setting variable of drying temperature (60°C – 80°C), air velocity (0.5 m/s – 2 m/s), carboxyl methyl cellulose (0.5% - 2.5%), egg albumen (5% - 15%). Twenty-two runs of the experiment were performed using different levels of variables combinations. Based on the statistical tests performed, the best model that described each response was selected using a polynomial analysis. Results: The optimum values for the drying conditions were: 77.42OC, 0.5m/s, 0.5% and 5% for temperature, air velocity, carboxyl methylcellulose and egg albumen respectively and the optimum values for the drying characteristics were: 25.07 KJ/mol, 1.7345E-10 m2/s, 29.019% (wet-basis). 0.742 g/cm3 and 540 minutes (approximately 9hrs) for activation energy, effective diffusivity, moisture content, foam density and the drying time respectively. Conclusion: The study of the foam-mat drying of watermelon pulp revealed that the inlet temperature, air velocity, CMC and egg albumen has a significant effect on its drying characteristics.


Author(s):  
Cong Shi ◽  
Li-jun Wang ◽  
Min Wu ◽  
Benu Adhikari ◽  
Li-te Li

Okara-maize flour blends were extruded in a co-rotating twin-screw extruder in order to assess their suitability as snack foods. Response surface methodology (RSM) using a central composite design was used to evaluate the effects of process variables (extrusion temperature (120-180°C), screw speed (100-180 rpm) and feed composition (20-40 percent ww) and moisture content (14-22 percent ww)). Multiple regression equations were developed to describe the effects of each variable on product responses. The product characteristics such as bulk density, expansion index, appearance (colour, porosity), flavor (aroma, grittiness and off-odor), texture (hardness, crispness and brittleness) and overall acceptability were determined through experiments and sensory analyses. Through superimposed RSM contour map, it was found that the feed composition with 30 percent okara content, 14.5-19.3 percent moisture content and the extrusion temperature 120.0-171.2°C and screw speed of 140 rpm, respectively to be the optimum extrusion conditions. The sensory tests showed that the products extruded at the optimized condition had the best appearance, taste, texture and overall acceptability. These results show that the okara-maize blends can be extruded into acceptable snack foods.


Author(s):  
Carolina M. Sánchez-Sáenz ◽  
Vânia R. G. Nascimento ◽  
João D. Biagi ◽  
Rafael A. de Oliveira

ABSTRACT Mathematical modeling enables dimensioning of dryers, optimization of drying conditions and the evaluation of process performance. The aim of this research was to describe the behavior of orange bagasse drying using Page's and Fick's second law models, and to assess activation energy (using Arrhenius equation), moisture content, water activity and bulk density of product at the end of the process. The drying experimental assays were performed in 2011 with convective air temperature between 36 and 64 ºC and infrared radiation application time in the range from 23 to 277 s in accordance with the experimental central composite rotatable design. Analysis of variance and F-test were applied to results. At the end of the drying process, moisture content was about 0.09 to 0.87 db and water activity was between 0.25 and 0.87. Bulk density did not vary under studied conditions. Empirical Page's model demonstrated better representation of experimental data than the Fick's model for spheres. Activation energy values were about 18.491; 14.975 and 11.421 kJ mol-1 for infrared application times of 60; 150 e 244 s, respectively.


Sign in / Sign up

Export Citation Format

Share Document