scholarly journals Sequential three-step process for the treatment of slaughter house wastewater and its optimization using response surface modeling studies

2021 ◽  
Vol 11 (8) ◽  
Author(s):  
Aliya Said Khalfan Al-Saidi ◽  
Nabila Nasser Said Al Rashidi ◽  
M. Geetha Devi ◽  
Varghese Manappallil Joy

AbstractThe rapid growth in the world population and fast developing industrialization have resulted in the acceleration of environmental pollution due to inadequate treatment methods accompanied by depletion of freshwater. The current research focused on the batch treatment of slaughter house wastewater (SWW) using the sequential three-step electro-coagulation (EC)–electro-oxidation (EO)–adsorption column (AC) processes and to compare the optimized values with the Omani National Standards for the application in irrigation purpose. The characterization of SWW before and after treatment was carried out by measuring chemical oxygen demand (COD), total organic carbon (TOC), total dissolved solids (TDS), turbidity, ammoniacal nitrogen (NH4–N) and conductivity. The optimization of the treatment processes was performed by response surface methodology (RSM) using central composite design. The maximum response obtained using EC unit was 99% with an operating cost of 2.78 USD/m3. The optimum treatment conditions in EC method were found to be 4.0 pH, electrolysis time of 30 min and electrolyte dosage of 5 g/L, with a current density of 18.11 mA/cm2. The maximum reduction in COD was 97% with an operating cost 0.32 USD/m3. The optimum COD reduction in EO method was 84.5% with an operating cost of 6.87 USD/m3. The optimum process parameters in the EO process were observed at 5.0 pH, 56.22 min electrolysis time with 5 g/L electrolyte dosage and a current density of 5 mA/cm2. The response shows 56.27% reduction in COD with an operating cost of 0.088 USD/m3. The study demonstrates that both EC and EO processes for the reduction of COD have a significant effect on the current density. Using adsorption column (AC) studies, the maximum reduction in COD was 76.8% with negligible operating cost. The optimum pH in the case of AC was 7.5, with an effluent flow rate of 8.63 mL/min, and the responses were found to be 76.067%, which indicates both pH and flow rate have significant effect on the % removal of COD.

Author(s):  
Mitra Afshar Moghaddam ◽  
Kambiz Seyyedi

Abstract In recent years, among the various treatment methods, the electrocoagulation process has been used for the treatment of effluents containing various dye pollutants. Sunset yellow (S.Y.) azo dye is one of the common food colors widely used in various food industries. This study investigated the removal of the dye S.Y. from aqueous media by the electrocoagulation method in an electrochemical reactor using concentric iron electrodes. The experiments were designed by the Response Surface Method (RSM) with the help of the Minitab software in such a way that the effect of various process-influencing parameters, such as current density, electrolysis time, electrolyte concentration, pH of the solution, and the effluent flow rate, on the desired pollutant removal efficiency was investigated. According to the results of the process optimization by RSM, the optimal conditions for the process were obtained as follows: pH of 10, current density of 2.65 mA/cm2, electrolysis time of 42.32 min, initial dye concentration of 20 mg/L, and effluent flow rate of 2.5 L/min. Under the above optimal conditions, the efficiency of dye removal was more than 99%.


2017 ◽  
Vol 19 (2) ◽  
pp. 67-71 ◽  
Author(s):  
Ha Manh Bui

Abstract The COD removal efficiency from an instant coffee processing wastewater using electrocoagulation was investigated. For this purpose, the response surface methodology was employed, using central composing design to optimize three of the most important operating variables, i.e., electrolysis time, current density and initial pH. The results based upon statistical analysis showed that the quadratic models for COD removal were significant at very low probability value (<0.0001) and high coefficient of determination (R2 = 0.9621) value. The statistical results also indicated that all the three variables and the interaction between initial pH and electrolysis time were significant on COD abatement. The maximum predicted COD removal using the response function reached 93.3% with electrolysis time of 10 min, current density of 108.3 A/m2 and initial pH of 7.0, respectively. The removal efficiency value was agreed well with the experimental value of COD removal (90.4%) under the optimum conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
P. Arulmathi ◽  
G. Elangovan ◽  
A. Farjana Begum

Distillery industry is recognized as one of the most polluting industries in India with a large amount of annual effluent production. In this present study, the optimization of electrochemical treatment process variables was reported to treat the color and COD of distillery spent wash using Ti/Pt as an anode in a batch mode. Process variables such as pH, current density, electrolysis time, and electrolyte dose were selected as operation variables and chemical oxygen demand (COD) and color removal efficiency were considered as response variable for optimization using response surface methodology. Indirect electrochemical-oxidation process variables were optimized using Box-Behnken response surface design (BBD). The results showed that electrochemical treatment process effectively removed the COD (89.5%) and color (95.1%) of the distillery industry spent wash under the optimum conditions: pH of 4.12, current density of 25.02 mA/cm2, electrolysis time of 103.27 min, and electrolyte (NaCl) concentration of 1.67 g/L, respectively.


2010 ◽  
Vol 61 (1) ◽  
pp. 107-118
Author(s):  
W. Y. Xu ◽  
P. Li ◽  
B. Dong

To be best of our knowledge, this study is one of the first investigations to be performed into the potential benefits of gas diffusion electrode (GDE) system in controlling inactivation of E. coli. This study mainly focused on the dual electrodes disinfection with gas diffusion cathode, using Escherichia coli as the indicator microorganisms. The effects of Pt load WPt and the pore-forming agent content WNH4HCO3 in GDE, operating conditions such as pH value, oxygen flow rate QO2, salt content and current density on the disinfection were investigated, respectively. The experimental results showed that the disinfection improved with increasing Pt load WPt, but its efficiency at Pt load of 3‰ was equivalent to that at Pt load of 4‰. Addition of the pore-forming agent in the appropriate amount improved the disinfection while drop of pH value resulted in the rapid rise of the germicidal efficacy and the disinfection shortened with increasing oxygen flow rate QO2. The system is more suitable for highly salt water. The germicidal efficacy increased with current density. However, the accelerating rate was different: it first increased with the current density, then decreased, and reached a maximum at current density of 6.7–8.3 mA/cm2. The germicidal efficacy in the cathode compartment was about the same as in the anode compartment indicating the contribution of direct oxidation and indirect treatment of E. coli by the hydroxyl radical was similar to the oxidative indirect effect of the generated H2O2. This technology is expensive in operating cost, further research is required to advance the understanding and reduce the operating cost of this technology.


2020 ◽  
Vol 26 (10) ◽  
pp. 1-14
Author(s):  
Enas Ali Anwer ◽  
Basma Abbas Abdulmajeed

This study investigates the results of electrocoagulation (EC) using aluminum (Al) electrodes as anode and stainless steel (grade 316) as a cathode for removing silica, calcium, and magnesium ions from simulated cooling tower blowdown waters. The simulated water contains (50 mg/l silica, 508 mg/l calcium, and 292 mg/l magnesium). The influence of different experimental parameters, such as current density (0.5, 1, and 2 mA/cm2), initial pH(5,7, and 10), the temperature of the simulated solution(250C and 35 0C), and electrolysis time was studied. The highest removal efficiency of 80.183%, 99.21%, and 98.06% for calcium, silica, and magnesium ions, respectively, were obtained at a current density of 1 mA/cm2, initial PH=7, the temperature of 250C and treatment time  60 min. The results have shown the ability of the EC process to remove silica and hardness ions from CTB water.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3522
Author(s):  
Abeer El Shahawy ◽  
Inas A. Ahmed ◽  
Mahmoud Nasr ◽  
Ahmed H. Ragab ◽  
Saedah R. Al-Mhyawi ◽  
...  

Electrocoagulation (EC) was studied in this study as a potential alternative approach for treating Olive Mill Wastewater (OMW). Aluminum plates were utilized as anode and cathode to evaluate the removal of Chemical Oxygen Demand (COD) from OMW and the aluminum electrode’s weight loss. Central Composite Experimental Design (CCD) and Response Surface Methodology were used to optimize its performance. Anodes were weighed before and after each electrocoagulation experiment, to compare the experimental and the theoretical dissolved aluminum weights calculated using Faraday’s law. We discovered the following EC conditions for CCD: current density = 15 mA/cm2, pH = 4, and electrolysis time of 30 min. Under these conditions, the maximum COD removal ratio was 41%, equating to an Al weight loss of 288.89 g/m3 at an estimated operating cost of 1.60 USD/m3. According to the response optimizer, the most economical operating settings for COD removal efficiency of 58.888% are pH 4, a current density of 18.41 mA/cm2, electrolysis time of 36.82 min, and Al weight loss of 337.33 g/m3, with a projected running cost of 2.00 USD/m3.


2019 ◽  
Vol 41 (1) ◽  
pp. 191-191
Author(s):  
Mohsen Garajehdaghi and Kambiz Seyyedi Mohsen Garajehdaghi and Kambiz Seyyedi

In the present study the removal of Acid red 1 (AR1), as a pollutant of contaminated waters, was investigated by the electrocoagulation method using a recirculating tubular reactor with punched anode. The role of the parameters affecting removal efficiency including current density, electrolysis time, electrolyte concentration and type, pH, the flow rate of the solution, and dye concentration was studied. Spectrophotometric results indicated that for 2500 ml of the dye solution containing 30 mg L-1 AR1 more than 95% of the dye was removed under the following conditions: current density of 1.3 mA cm-2, electrolysis time of 20 min, pH of 6, electrolyte dosage of 0/08 g L-1 , and the flow rate of 2 L min-1. Results showed that with an increase the electrolyte concentration and current density, color removal efficiency increases. Increasing of the flow rate of solution in the reactor due to decrease the retention time, decreases the removal efficiency. According to nature of electrocoagulation process, neutral range of pH is suitable for decolorization process.


2021 ◽  
Vol 13 (1) ◽  
pp. 61-68
Author(s):  
A.K. Varma ◽  
A. Chouhan ◽  
R. Shankar ◽  
P. Mondal ◽  
A.K. Rathore ◽  
...  

In the present study, the electrocoagulation process using iron electrodes was used to treat synthetic water containing lead and copper. Box-Behnken design of response surface methodology was applied to optimize the process variables namely initial pH, current density and treatment time along with operating cost. At optimum conditions (initial pH: 5, current density: 50 A/m2, treatment time: 40 min), the model predicted value for removal of lead and copper was found as 102.81% and 99.75%, respectively with an operating cost of 0.481 USD/m3. Whereas, the actual or experimental values of lead and copper removal were found as 99.98 % and 99.88 % as well as operating cost of 0.476 USD/m3, which signifies a good closeness between the model predicted values and actual values. The concentration of lead and copper in treated water was found below the permissible limits as per CPCB norms for industrial discharge.


Author(s):  
Hariraj Singh ◽  
Brijesh Kumar Mishra ◽  
Aditya Prakash Yadav

The aim of the present work was to investigate the removal of phenol from a synthetic solution by the enhanced electrochemical oxidation process using graphite electrodes. Central composite design (CCD) and Box Behnken Design (BBD) under Response Surface Methodology (RSM) tool were used to investigate the effects of major operating variables viz. Current density (mA/ cm2): (2.27 to 4.54), pH: (5.5 to 7.5) and electrolysis time (min): (30 to 90). The predicted values of BBD responses obtained using RSM were more significant than the CCD model in terms of reaction time, whereas under the desirability test CCD model was found more appropriate in terms of phenol removal and power consumption. The optimal result shows that the CCD model predicted and experimental values of phenol removal and power consumption are 92.87 %; 0.866 kWh/m3 and 86.34 %; 1.12 kWh/m3 respectively under optimized variable conditions, current density: 2.78 mA/cm2, pH: 6.98 and electrolysis time: 88.02 minutes at high desirability level.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3136
Author(s):  
Milaad Moosazade ◽  
Razieh Ashoori ◽  
Hamid Moghimi ◽  
Mohammad Ali Amani ◽  
Zacharias Frontistis ◽  
...  

The use of electrochemistry is a promising approach for the treatment of direct osmosis concentrate that contains a high concentration of organic pollutants and has high osmotic pressure, to achieve the safe discharge of effluent. This work addresses, for the first time, this major environmental challenge using perforated aluminum electrodes mounted in an electrocoagulation–flotation cell (PA-ECF). The design of the experiments, the modeling, and the optimization of the PA-ECF conditions for the treatment of DO concentrate rich in Pb were explored using a central composite design (CCD) under response surface methodology (RSM). Therefore, the CCD-RSM was employed to optimize and study the effect of the independent variables, namely electrolysis time (5.85 min to 116.15 min) and current intensity (0.09 A to 2.91 A) on Pb removal. Optimal values of the process parameters were determined as an electrolysis time of 77.65 min and a current intensity of 0.9 A. In addition to Pb removal (97.8%), energy consumption, electrode mass-consumed material, and operating cost were estimated as 0.0025 kWh/m3, 0.217 kg Al/m3, and 0.423 USD/m3, respectively. In addition, it was found that DO concentrate obtained from metallurgical wastewater can be recovered through PA-ECF (almost 94% Pb removal). This work demonstrated that the PA-ECF technique could became a viable process applicable in the treatment of DO concentrate containing Pb-rich for reuse.


Sign in / Sign up

Export Citation Format

Share Document