scholarly journals Organic Pollutants Removal from Olive Mill Wastewater Using Electrocoagulation Process via Central Composite Design (CCD)

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3522
Author(s):  
Abeer El Shahawy ◽  
Inas A. Ahmed ◽  
Mahmoud Nasr ◽  
Ahmed H. Ragab ◽  
Saedah R. Al-Mhyawi ◽  
...  

Electrocoagulation (EC) was studied in this study as a potential alternative approach for treating Olive Mill Wastewater (OMW). Aluminum plates were utilized as anode and cathode to evaluate the removal of Chemical Oxygen Demand (COD) from OMW and the aluminum electrode’s weight loss. Central Composite Experimental Design (CCD) and Response Surface Methodology were used to optimize its performance. Anodes were weighed before and after each electrocoagulation experiment, to compare the experimental and the theoretical dissolved aluminum weights calculated using Faraday’s law. We discovered the following EC conditions for CCD: current density = 15 mA/cm2, pH = 4, and electrolysis time of 30 min. Under these conditions, the maximum COD removal ratio was 41%, equating to an Al weight loss of 288.89 g/m3 at an estimated operating cost of 1.60 USD/m3. According to the response optimizer, the most economical operating settings for COD removal efficiency of 58.888% are pH 4, a current density of 18.41 mA/cm2, electrolysis time of 36.82 min, and Al weight loss of 337.33 g/m3, with a projected running cost of 2.00 USD/m3.

2019 ◽  
Vol 9 (3) ◽  
pp. 212-221
Author(s):  
Fatima Erraib ◽  
Khalid El Ass

Box–Behnken response surface design was successfully employed to optimize and study the olive mill wastewater (OMW) treatment by electrocoagulation (EC) process. The influence of four decisive factors were modelled and optimized to increase the removal of chemical oxygen demand (COD). The Box–Behnken design (BBD) results were analyzed and the second-order polynomial model was developed using multiple regression analysis. The model developed from the experimental design was predictive and a good fit with the experimental data with a high coefficient of determination (R2 ) value (more than 0.98). The optimal operating conditions based on Derringer’s desired function methodology are found to be; initial pH of 4.4, a current density of 27.6 mA/cm2 , electrolysis time of 14.1 min, and chloride concentration of 3.2 g/L. Under these conditions, the predicted COD removal efficiency was found to be 67.14% with a desirability value of 0.94. These experimental results were confirmed by validation experiments and proved that Box–Behnken design and response surface methodology could efficiently be applied for modelling of COD removal from OMW.


2017 ◽  
Vol 8 (4) ◽  
pp. 497-506 ◽  
Author(s):  
W. Pantorlawn ◽  
T. Threrujirapapong ◽  
W. Khanitchaidecha ◽  
D. Channei ◽  
A. Nakaruk

Abstract Spent coolant is considered as one of the most polluting industrial wastes and causes environmental problems. It mostly contains high non-biodegradable organic carbon and oil contents; the biodegradability index was very low at 0.04, which is difficult to be effectively treated by common treatment systems. Electrocoagulation (EC) was proposed for a pre-treatment of coolant. The laboratory-scale of EC reactor was developed with Al electrodes and 10 mm of interelectrodes. The efficiency of the EC reactor on chemical oxygen demand (COD) removal was investigated at various current densities and electrolysis times. The highest current density of 50 mA/cm2 induced a short electrolysis time of 10 min to reach the steady state of approximately 65% COD removal. When lower current densities of 20–40 mA/cm2 were supplied to the EC reactor, COD removal efficiency of 65% can be achieved at longer electrolysis times. According to the specific energy consumption and sludge production, the optimal condition for spent coolant treatment was the current density of 20 mA/cm2 and electrolysis time of 30 min in which a COD removal of efficiency of 68% was obtained, 0.88 kWh/kg-COD of the specific energy consumption and 0.04 kg/kg-COD of the sludge production.


2017 ◽  
Vol 77 (1) ◽  
pp. 177-186 ◽  
Author(s):  
Mehtap Tanyol ◽  
Aysenur Ogedey ◽  
Ensar Oguz

Abstract This study examines the removal of chemical oxygen demand (COD) from landfill leachate generated from the municipal landfill site of Bingol, Turkey. The effect of parameters such as current density, pH, and inter-electrode distance during the electrocoagulation (EC) process on COD removal of the process was investigated. Moreover, for COD removal, the energy consumption and operating costs were calculated for iron electrode under the EC conditions. COD removal efficiency was 72.13% at the current density of 16 mA m−2, pH of 8.05, and the inter-electrode distance of 9 mm at the detention time of 60 min with iron electrode and the COD concentration was reduced from 6,100 mg L−1 to 1,700 mg L−1 by EC. The highest value of the electrical energy and electrode consumptions per kg of COD in the optimum conditions were determined as 0.055 kWh kg−1 COD and 3.43 kg kg−1 COD and the highest operating cost value was found to be 1.41 US$ kg−1 COD for 0–60 min time intervals.


2018 ◽  
Vol 83 (4) ◽  
pp. 489-502 ◽  
Author(s):  
Erdal Yabalak ◽  
Özkan Görmez ◽  
Belgin Sönmez

An environmentally friendly method to decontaminate the olive mill wastewater, which is encountered as a major environmental problem is presented in this study. The removal of both polyphenolic and aromatic content and the degradation of wastewater of olive mill supplied from Mersin/Turkey region were investigated by the subcritical water oxidation method using H2O2. The central composite design of response surface methodology was used to assess the effects of temperature, treatment time, and the concentration of oxidising agent. The reliability of the employed method was proved by ANOVA. The optimum experimental parameters were determined and theoretical equations were proposed in each case. The highest chemical oxygen demand removal, dephenolisation and dearomatisation values were obtained as 85.74, 96.13 and 95.94 %, respectively.


2012 ◽  
Vol 441 ◽  
pp. 555-558
Author(s):  
Feng Tao Chen ◽  
San Chuan Yu ◽  
Xing Qiong Mu ◽  
Shi Shen Zhang

The Ti/SnO2-Sb2O3/PbO2 electrodes were prepared by thermal decomposition method and its application in the electrochemical degradation of a heteropolyaromatic dye, Methylene blue (MB), contained in simulated dye wastewater were investigated under mild conditions. The effects of pH, current density and electrolysis time on de-colorization efficiency were also studied. Chemical oxygen demand (COD) was selected as another parameter to evaluate the efficiency of this degradation method on treatment of MB wastewater. The results revealed that when initial pH was 6.0, current density was 50 mA·cm2, electrolysis time was 60 min, Na2SO4 as electrolyte and its concentration was 3.0 g·dm3, the de-colorization and COD removal efficiency can reach 89.9% and 71.7%, respectively.


2014 ◽  
Vol 50 (2) ◽  
pp. 198-209 ◽  
Author(s):  
Malika Aoudjehane ◽  
Mohamed Elghazali Benatallah

A procedure of electrocoagulation (EC) using iron electrodes has been used for the treatment of the wastewaters produced by the Beni-Tamou dairy in Algeria. The effect of the operating conditions, such as the current intensity, the electrolysis time, the pH of the solution and the electrical conductivity, on the removal efficiency of chemical oxygen demand (COD) and the total suspended solids (TSS) has been studied. An inter-electrode distance of 1 cm has been maintained constant during the tests. It has been found that an increase in electrolysis time and current density improved the treatment significantly, albeit with a greater consumption of energy as well as an increased electrode consumption. The results of the electrocoagulation treatment under various operating conditions show that the optimal efficiency has been obtained under the following conditions: 60 minutes of electrolysis, a current density of 200 A/m2, a pH 8, an electrical conductivity of 4.72 mS/cm and a consumption energy of 13.57 kWh/m3. Under these conditions, the removal efficiency for the COD and TSS parameters is 93.26 and 99.3%, respectively. The optimal treatment conditions of dairy wastewaters have resulted in final COD and TSS concentrations of 41.5 and 27 mg/L, respectively, values that are conform to industrial liquid effluents discharge norms.


2007 ◽  
Vol 58 (1) ◽  
Author(s):  
Alba Ena ◽  
Pietro Carlozzi ◽  
Benjamin Pushparaj ◽  
Raffaella Paperi ◽  
Silvia Carnevale ◽  
...  

2020 ◽  
Vol 81 (9) ◽  
pp. 1914-1926 ◽  
Author(s):  
Y. Jaouad ◽  
M. Villain-Gambier ◽  
L. Mandi ◽  
B. Marrot ◽  
N. Ouazzani

Abstract Membrane bioreactor (MBR) has been proven to be an efficient technology capable of treating various industrial effluents. However, the evaluation of its performances in the case of olive mill wastewater (OMW) over a conventional activated sludge (CAS) have not been determined yet. The present study aims to compare OMW treatment in two laboratory scale pilots: an external ceramic MBR and CAS starting with an acclimation step in both reactors by raising OMW concentration progressively. After the acclimation step, the reactors received OMW at 2 gCOD/L with respect to an organic loading rate of 0.2 and 0.3 kgCOD/kgMLVSS/d for MBR and CAS, respectively. Biomass acclimation occurred successfully in both systems; however, the MBR tolerated more OMW toxicity than CAS as the MBR always maintained an effluent with a better quality. At a stable state, a higher reduction of 95% chemical oxygen demand (COD) was obtained with MBR compared to CAS (86%), but both succeeded in polyphenols removal (80%). Moreover, a higher MLSS elimination from the MBR treated water (97%) was measured against 88% for CAS. Therefore, CAS was suitable for OMW treatment and MBR could be proposed as an alternative to CAS when a better quality of treated water is required.


2020 ◽  
Vol 10 (20) ◽  
pp. 7329
Author(s):  
Srikanth Vuppala ◽  
Marco Stoller

In this study, a synthetic phenol solution of water and raw olive mill wastewater (OMW) were considered to achieve purification of the aqueous streams from pollutants. Only OMW was initially submitted to a coagulation/flocculation process, to reduce the turbidity, phenols, and chemical oxygen demand (COD). This first treatment appeared to be mandatory in order to remove solids from wastewater, allowing the successive use of laboratory-made core-shell nanocomposites. In detail, the optimal coagulant concentration, i.e., chitosan, was 500 mg/L, allowing a reduction of the turbidity and the COD value by 90% and 33%, respectively. After this, phenol wastewater was tested for photocatalysis and then OMW was treated by employing the laboratory-made nanocomposites in a photoreactor equipped with visible light sources and using optimal catalyst concentrations, which allowed for an additional 45% reduction of the COD of the OMW. In addition to this, the effect of the operating temperature was investigated on the photocatalytic process, and suitable kinetic models proposed.


2010 ◽  
Vol 61 (4) ◽  
pp. 399-405 ◽  
Author(s):  
Tibela Dragičević ◽  
Marijana Hren ◽  
Margareta Gmajnić ◽  
Sanja Pelko ◽  
Dzoko Kungulovski ◽  
...  

Biodegradation of Olive Mill Wastewater by Trichosporon Cutaneum and Geotrichum CandidumOlive oil production generates large volumes of wastewater. These wastewaters are characterised by high chemical oxygen demand (COD), high content of microbial growth-inhibiting compounds such as phenolic compounds and tannins, and dark colour. The aim of this study was to investigate biodegradation of olive mill wastewater (OMW) by yeasts Trichosporon cutaneum and Geotrichum candidum. The yeast Trichosporon cutaneum was used because it has a high potential to biodegrade phenolic compounds and a wide range of toxic compounds. The yeast Geotrichum candidum was used to see how successful it is in biodegrading compounds that give the dark colour to the wastewater. Under aerobic conditions, Trichosporon cutaneum removed 88 % of COD and 64 % of phenolic compounds, while the dark colour remained. Geotrichum candidum grown in static conditions reduced COD and colour further by 77 % and 47 %, respectively. This investigation has shown that Trichosporon cutaneum under aerobic conditions and Geotrichum candidum under facultative anaerobic conditions could be used successfully in a two-step biodegradation process. Further investigation of OMW treatment by selected yeasts should contribute to better understanding of biodegradation and decolourisation and should include ecotoxicological evaluation of the treated OMW.


Sign in / Sign up

Export Citation Format

Share Document