scholarly journals Significant production improvement using optimization of completion and artificial lift: case studies from South-West Iran

Author(s):  
Rahman Ashena ◽  
Mahmood Bataee ◽  
Hamed Jafarpour ◽  
Hamid Abbasi ◽  
Anatoly Zolotukhin ◽  
...  

AbstractProductivity of wells in South-West Iran has decreased due to completion and production problems in recent decades. This is a large risk against sustainable production from the fields. To allow stable production, an important measure is completion and production optimization including artificial lift methods. This was investigated using simulations validated by pilot field tests. Several case studies were considered in terms of their completion and production. Five scenarios were investigated: natural production through annulus and tubing (scenario-1 and 2), artificial gas lift production through annulus (scenario-3), through tubing using non-standard gas lift (scenario-4) and using standard gas lift (scenario-5). Scenario-1 is currently the case in most wells of the field. To find the optimal scenario and completion/production parameters, simulations of 11 wells of an oilfield in the region were carried out using nodal and sensitivity analysis. The optimized parameters include wellhead pressures (WHPs), tubing dimensions, maximum tolerable water cuts and gas oil ratios and artificial gas injection rate. Simulation results were validated by pilot field tests. In addition, appropriately selected wellhead and Christmas trees for all scenarios were depicted. Simulations confirmed by field pilot tests showed that optimization of completion and production mode and parameters can contribute largely to production improvement. The results showed that the current scenario-1 is the worst of all. However, production through tubing (scenario-2) is optimal for wells which can produce with natural reservoir pressure, with an increase of 800 STB/Day rate per well compared with scenario-1. However, for wells requiring artificial gas lift, the average production rate increase (per well) from the annulus to tubing production was 1185 STB/Day. Next, using the standard gas lift (scenario-5) was found to be the optimal mode of gas lifting and is strongly recommended. WHPs in scenario-5 were the greatest of all, whereas scenario-1 gave the lowest WHPs. The optimal tubing diameter and length were determined. The greatest maximum tolerable water cut was obtained using scenario-5, whereas the lowest was with scenario-1. The maximum tolerable GOR was around 1900 scf/STB. Changing of scenarios did not have significant effect on maximum tolerable GOR. The optimal artificial gas injection rates were found. This validated simulation work proved that completion and production optimization of mode and parameters had considerable contribution to production improvement in South-West Iran. This sequential comprehensive work can be applied in any other field or region.

2019 ◽  
Author(s):  
Ahmed Alshmakhy ◽  
Khadija Al Daghar ◽  
Sameer Punnapala ◽  
Shamma AlShehhi ◽  
Abdel Ben Amara ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 75
Author(s):  
Harry Budiharjo Sulistyarso ◽  
KRT Nur Suhascaryo ◽  
Mochamad Jalal Abdul Goni

The MRA platform is one of the offshore platforms located in the north of the Java Sea. The MRA platform has 4 production wells, namely MRA-2ST, MRA-4ST, MRA-5, and MRA-6 wells. The 4 production wells are produced using an artificial lift in the form of a gas lift. The limited gas lift at the MRA Platform at 3.1 MMSCFD makes the production of wells at the MRA Platform not optimal because the wells in the MRA Platform are experiencing insufficient gas lift. Optimization of gas lift injection is obtained by redistribution of gas lift injection for each. The results of the analysis in this study indicate that the optimum gas lift injection for the MRA-2ST well is 0.5552 MMSCFD, the MRA-6 well is 1.0445 MMSCFD, the MRA-5 well is 0.7657 MMSCFD, finally the MRA-4ST well with gas injection. lift is 0.7346 MMSCFD. The manual gas lift in the MRA-4ST is also replaced based on an economic feasibility analysis to ensure that the gas lift injection for each well can be kept constant. The redistribution of gas lift carried out by the author has increased the total production rate of the MRA Platform by 11,160 BO/year or approximately USD 781,200/year. Keywords: Gas lift; Insufficient; Optimization


2018 ◽  
Vol 2 (1) ◽  
pp. 32
Author(s):  
Mia Ferian Helmy

Gas lift is one of the artificial lift method that has mechanism to decrease the flowing pressure gradient in the pipe or relieving the fluid column inside the tubing by injecting amount of gas into the annulus between casing and tubing. The volume of  injected gas was inversely proportional to decreasing of  flowing  pressure gradient, the more volume of gas injected the smaller the pressure gradient. Increasing flowrate is expected by decreasing pressure gradient, but it does not always obtained when the well is in optimum condition. The increasing of flow rate will not occured even though the volume of injected gas is abundant. Therefore, the precisely design of gas lift included amount of cycle, gas injection volume and oil recovery estimation is needed. At the begining well AB-1 using artificial lift method that was continuos gas lift with PI value assumption about 0.5 STB/D/psi. Along with decreasing of production flow rate dan availability of the gas injection in brownfield, so this well must be analyze to determined the appropriate production method under current well condition. There are two types of gas lift method, continuous and intermittent gas lift. Each type of gas lift has different optimal condition to increase the production rate. The optimum conditions of continuous gaslift are high productivity 0.5 STB/D/psi and minimum production rate 100 BFPD. Otherwise, the intermittent gas lift has limitations PI and production rate which is lower than continuous gas lift.The results of the analysis are Well AB-1 has production rate gain amount 20.75 BFPD from 23 BFPD became 43.75 BFPD with injected gas volume 200 MSCFPD and total cycle 13 cycle/day. This intermittent gas lift design affected gas injection volume efficiency amount 32%.


1985 ◽  
Vol 25 (1) ◽  
pp. 107
Author(s):  
Kathryn J. Fagg

Gas lift has proved a most effective artificial lift method for the fields operated by Esso Australia Ltd in Bass Strait for the Esso-BHP joint venture. Gas lift is now used to produce approximately 5 st ML/d of the total crude production from the Strait. It has enabled wells to be produced to water cuts higher than 90 per cent, increasing the oil recovery from the fields by up to 35 per cent.Gas lift work in Bass Strait to date has included the use of special packoff gas lift assemblies for wells with sliding sleeves, the development of a tool to assist the opening of the sleeves, improved operating techniques to limit slugging from gas-lifted wells, and the testing of gas lift performance. Gas lifting has been more successful than expected, and as a result, workovers initially planned to install full gas lift strings for older wells have not been necessary. The two phase flow correlations available have been improved to match the performance of the gas-lifted wells. The correlations are now used to design tubing strings with a number of gas lift mandrels prior to running the initial completions and to select the optimum gas injection depth.Future work in gas lift for Bass Strait will involve the optimisation and automation of lift gas distribution on the platforms. Gas lift will also be used for planned future developments, including mini-platforms and subsea completions.


Author(s):  
Gabriel A. Alarcón ◽  
Carlos F. Torres-Monzón ◽  
Nellyana Gonzalo ◽  
Luis E. Gómez

Abstract Continuous flow gas lift is one of the most common artificial lift method in the oil industry and is widely used in the world. A continuous volume of gas is injected at high pressure into the bottom of the tubing, to gasify the oil column and thus facilitate the extraction. If there is no restriction in the amount of injection gas available, sufficient gas can be injected into each oil well to reach maximum production. However, the injection gas available is generally insufficient. An inefficient gas allocation in a field with limited gas supply also reduces the revenues, since excessive gas injection is expensive due to the high gas prices and compressing costs. Therefore, it is necessary to assign the injection gas into each well in optimal form to obtain the field maximum oil production rate. The gas allocation optimization can be considered as a maximization of a nonlinear function, which models the total oil production rate for a group of wells. The variables or unknowns for this function are the gas injection rates for each well, which are subject to physical restrictions. In this work a MATLAB™ nonlinear optimization technique with constraints was implemented to find the optimal gas injection rates. A new mathematical fit to the “Gas-Lift Performance Curve” is presented and the numeric results of the optimization are given and compared with results of other methods published in the specialized literature. The optimization technique proved fast convergence and broad application.


2021 ◽  
Vol 73 (05) ◽  
pp. 21-27
Author(s):  
Stephen Rassenfoss

Gas lift is one of the most popular ways to increase oil-well production, and it is no secret that it is an underperformer. Back in 2014, ExxonMobil reported that by creating a team of roving gas-lift experts it was able to add an average of 22% more output on several hundred wells where the gas injection had been optimized. Gains were expected because “wells do not remain the same over time; they change,” said Rodney Bane, global artificial-lift manager at ExxonMobil, in this JPT story covering the 2014 SPE Artificial Lift Conference and Exhibition (https://jpt.spe.org/paying-close-attention-gas-lift-system-can-be-rewarding). The problem with gas injection is that change is hard. Injection adjustment or repairs require either pulling the tubing to reach the injection mandrels or a wireline run. Those with good- producing wells, particularly offshore, need to weigh the possible gain against the cost and lost production during the job. Those managing more and more wells live with iffy data, injection systems prone to malfunction, horizontal wells prone to irregular flows, and a time-consuming process for calculating the proper injection rates. New approaches addressing those negatives have led a few big operators to try new systems designed to allow constant adjustments based on downhole data with electric control systems designed to be more reliable. Programmable digital controls raise an obvious question: How do you take advantage of that capability? Constantly updated injection data based on traditional evaluation methods is the first step. And new capabilities are inspiring new thinking about how injected gas lifts production and how to make it work more efficiently. Optimizing the process has not been a priority in gas lift. “It was a fairly imprecise thing. But the beauty of gas lift is it works even where it’s broken. It’s not a pump; it’s flow assurance,” said Brent Vangolen, surface and base management technology manager with Occidental. Occidental is among the early adopters of new gas-lift methods along with companies including Chevron, Shell, ExxonMobil, Petronas, and ADNOC. Vangolen expects the industry will follow. “Gas lift is going through the same transformation as rod pumps went through in the 60s and 70s,” he said. Back then, rod pump engineers began tracking changes in the load on the rod through each pump stroke by using dynamometer cards. That data was used to better program pump controls. “You went from egg timers on pumping units to full-blown optimization pumpoff controllers, variable speed drives … this huge infant technology that changed the rod pump space,” he said. Papers at last year’s SPE artificial lift conference covered the continuing digitization in rod lift and that gas lift was finally moving in that direction.


2002 ◽  
Vol 124 (4) ◽  
pp. 262-268 ◽  
Author(s):  
Gabriel A. Alarco´n ◽  
Carlos F. Torres ◽  
Luis E. Go´mez

Continuous flow gas lift is one of the most common artificial lift methods widely used in the oil industry. A continuous volume of high-pressure gas is injected as deep as possible into the tubing, to gasify the oil column, and thus facilitate the production. If there is no restriction in the amount of injection gas available, sufficient gas can be injected into each oil well to reach maximum production. However, the injection gas available is generally insufficient. An inefficient gas allocation in a field with limited gas supply reduces the revenues, since excessive gas injection is expensive due to the high gas prices and compressing costs. Therefore, it is necessary to assign the injection gas into each well in optimal form to obtain the field maximum oil production rate. The gas allocation optimization can be considered as a maximization of a nonlinear function, which models the total oil production rate for a group of wells. The variables or unknowns for this function are the gas injection rates for each well, which are subject to physical restrictions. In this work a nonlinear optimization technique, based on an objective function with constraints, was implemented to find the optimal gas injection rates. A new mathematical fit to the gas-lift performance curve (GLPC) is presented and the numeric results of the optimization are given and compared with those of other methods published in the specialized literature. The GLPC can be either measured in the field, or alternatively generated by computer simulations, by mean of nodal analysis. The optimization technique proved fast convergence and broad application.


2021 ◽  
Author(s):  
Zaidi Awang@Mohamed ◽  
Jagaan Selladurai ◽  
Siti Nur Mahirah Mohd Zain ◽  
Juhari Yang ◽  
Badroel Rizwan Bahar ◽  
...  

Abstract Objectives/Scope This paper describes a pilot installation of a digital intelligent artificial lift (DIAL) gas lift production optimization system. The work was inspired by PETRONAS' upstream digitalization strategy with five single and dual-string gas lift completions planned from 2018 to 2020, offshore Malaysia. The authors evaluate the impact of the DIAL system in terms of increasing production, optimizing lift-gas injection, reducing well intervention frequency, as well as OPEX and risk reduction. Methods, Procedure, Process DIAL is a unique technology that enhances the efficiency of gas lift production. Downhole monitoring of production parameters informs remote surface-controlled adjustment of gas lift valves. This enables automation of production optimization removing the need for well intervention. The paper focuses on a well installed in June 2020, the first in a five well campaign. The authors will provide details of the technology, and pilot program phases: system design; pre-job preparations; run in hole and surface hook-up; commissioning and unloading; and subsequent production operations. For each phase, challenges encountered, and lessons learned will be listed together with observed benefits. Results, Observations, Conclusions DIAL introduces a paradigm shift in the design, installation, and operation of gas lifted wells. This paper will compare the differences between this digital technology and conventional gas lift techniques. It will consider the value added from the design stage through installation operations to production optimization. The DIAL system's ability to operate at greater than 80-degree deviation enabled deeper injection while avoiding tractor interventions for GLV maintenance in the highly deviated section of the well. Built-in downhole sensors provided real-time pressure monitoring that enabled a better understanding of reservoir behaviour and triggered data-driven reservoir stimulation decisions. The technology also proved very beneficial for production optimization, with the intervention-less adjustment of gas injection rate and depth downhole, based on the observed reservoir response in real time. The variable port sizes can be manipulated by means of surface switch/control. Overcoming the completion challenges due to COVID-19 restrictions, the well was unloaded and brought online with the assistance of personnel located in Houston and Dubai using Silverwell's visualization software. The well continues to be remotely monitored and controlled ensuring continuous production optimization, part of PETRONAS' upstream digitization strategic vision. Novel/Additive Information First deployment worldwide of new and unique gas lift production optimization technology in offshore highly deviated well. The technology deployment was the result of collaborative work between a multi-discipline engineering team in PETRONAS, Silverwell, and Neural Oilfield Service.


Author(s):  
Son Tung Pham ◽  
Dinh Hau Tran

AbstractArtificial lift methods such as ESP and GL are commonly used in oil wells around the world, especially in offshore wells. However, these two methods are normally used separately, and this paper therefore aimed to study the possible combination of ESP and GL by analyzing its effects on energy saving using equivalent depth method and on production rate as well as on ESP life cycle using nodal analysis. The paper also performed the production optimization for a network of wells using each well a combination of GL and ESP. The optimization process consists of selecting the appropriate operation frequency for the ESP system and the injection gas lift distributed to each well with the aim of maximizing the total production of the network. In addition, this optimization process was conducted in two cases: unlimited and limited volume of injection gas lift. In case the GL flow is limited, the BST (Binary Search Tree) algorithm was used to determine the suitable gas rates injected into each well to maximize the total network production. The optimization workflow proposed in this study was applied to the field X in Cuu Long basin of Vietnam and was calibrated from the real data of this field. The results demonstrated the advantage of the combination of ESP and GL in energy saving and in application for small diameter wells. In addition, the workflow and source code will allow engineers to replicate the results and to apply this method for future studies in order to determine optimum operating parameters of this hybrid artificial lift to achieve the highest production rate from a network of multiple wells.


2020 ◽  
Vol 1 (2) ◽  
pp. 61
Author(s):  
Ikenna Tobechukwu Okorocha ◽  
Chuka Emmanuel Chinwuko ◽  
Chika Edith Mgbemena ◽  
Chinedum Ogonna Mgbemena

Gas Lift operation involves the injection of compressed gas into a low producing or non-performing well to maximize oil production. The oil produced from a gas lift well is a function of the gas injection rate. The optimal gas injection rate is achieved by optimization. However, the gas lift, which is an artificial lift process, has some drawbacks such as the deterioration of the oil well, incorrect production metering, instability of the gas compressor, and over injection of gas. This paper discusses the various optimization techniques for the gas lift in the Oil and Gas production process. A systematic literature search was conducted on four databases, namely Google Scholar, Scopus, IEE Explore and DOAJ, to identify papers that focused on Gas lift optimizations. The materials for this review were collected primarily via database searches. The major challenges associated with gas lift were identified, and the different optimization strategies available in the literature reviewed. The strategies reviewed were found to be based on artificial intelligence (AI) and machine learning (ML). The implementation of any of the optimization strategies for the gas lift will enhance profitability, reduce operational cost, and extend the life of the wells.


Sign in / Sign up

Export Citation Format

Share Document