Global Optimization of Gas Allocation to a Group of Wells in Artificial Lift Using Nonlinear Constrained Programming

2002 ◽  
Vol 124 (4) ◽  
pp. 262-268 ◽  
Author(s):  
Gabriel A. Alarco´n ◽  
Carlos F. Torres ◽  
Luis E. Go´mez

Continuous flow gas lift is one of the most common artificial lift methods widely used in the oil industry. A continuous volume of high-pressure gas is injected as deep as possible into the tubing, to gasify the oil column, and thus facilitate the production. If there is no restriction in the amount of injection gas available, sufficient gas can be injected into each oil well to reach maximum production. However, the injection gas available is generally insufficient. An inefficient gas allocation in a field with limited gas supply reduces the revenues, since excessive gas injection is expensive due to the high gas prices and compressing costs. Therefore, it is necessary to assign the injection gas into each well in optimal form to obtain the field maximum oil production rate. The gas allocation optimization can be considered as a maximization of a nonlinear function, which models the total oil production rate for a group of wells. The variables or unknowns for this function are the gas injection rates for each well, which are subject to physical restrictions. In this work a nonlinear optimization technique, based on an objective function with constraints, was implemented to find the optimal gas injection rates. A new mathematical fit to the gas-lift performance curve (GLPC) is presented and the numeric results of the optimization are given and compared with those of other methods published in the specialized literature. The GLPC can be either measured in the field, or alternatively generated by computer simulations, by mean of nodal analysis. The optimization technique proved fast convergence and broad application.

Author(s):  
Gabriel A. Alarcón ◽  
Carlos F. Torres-Monzón ◽  
Nellyana Gonzalo ◽  
Luis E. Gómez

Abstract Continuous flow gas lift is one of the most common artificial lift method in the oil industry and is widely used in the world. A continuous volume of gas is injected at high pressure into the bottom of the tubing, to gasify the oil column and thus facilitate the extraction. If there is no restriction in the amount of injection gas available, sufficient gas can be injected into each oil well to reach maximum production. However, the injection gas available is generally insufficient. An inefficient gas allocation in a field with limited gas supply also reduces the revenues, since excessive gas injection is expensive due to the high gas prices and compressing costs. Therefore, it is necessary to assign the injection gas into each well in optimal form to obtain the field maximum oil production rate. The gas allocation optimization can be considered as a maximization of a nonlinear function, which models the total oil production rate for a group of wells. The variables or unknowns for this function are the gas injection rates for each well, which are subject to physical restrictions. In this work a MATLAB™ nonlinear optimization technique with constraints was implemented to find the optimal gas injection rates. A new mathematical fit to the “Gas-Lift Performance Curve” is presented and the numeric results of the optimization are given and compared with results of other methods published in the specialized literature. The optimization technique proved fast convergence and broad application.


1995 ◽  
Vol 117 (2) ◽  
pp. 87-92 ◽  
Author(s):  
N. Nishikiori ◽  
R. A. Redner ◽  
D. R. Doty ◽  
Z. Schmidt

A new method for finding the optimum gas injection rates for a group of continuous gas lift wells to maximize the total oil production rate is established. The new method uses a quasi-Newton nonlinear optimization technique which is incorporated with the gradient projection method. The method is capable of accommodating restrictions to the gas injection rates. The only requirement for fast convergence is that a reasonable estimate of the gas injection rates must be supplied as an initial point to the optimization method. A method of estimating the gas injection rates is developed for that purpose. A computer program is developed capable of implementing the new optimization method as well as generating the initial estimate of the gas injection rates. This program is then successfully tested on field data under both unlimited and limited gas supply. The new optimization technique demonstrates superior performance, faster convergence, and greater application.


2018 ◽  
Vol 2 (1) ◽  
pp. 32
Author(s):  
Mia Ferian Helmy

Gas lift is one of the artificial lift method that has mechanism to decrease the flowing pressure gradient in the pipe or relieving the fluid column inside the tubing by injecting amount of gas into the annulus between casing and tubing. The volume of  injected gas was inversely proportional to decreasing of  flowing  pressure gradient, the more volume of gas injected the smaller the pressure gradient. Increasing flowrate is expected by decreasing pressure gradient, but it does not always obtained when the well is in optimum condition. The increasing of flow rate will not occured even though the volume of injected gas is abundant. Therefore, the precisely design of gas lift included amount of cycle, gas injection volume and oil recovery estimation is needed. At the begining well AB-1 using artificial lift method that was continuos gas lift with PI value assumption about 0.5 STB/D/psi. Along with decreasing of production flow rate dan availability of the gas injection in brownfield, so this well must be analyze to determined the appropriate production method under current well condition. There are two types of gas lift method, continuous and intermittent gas lift. Each type of gas lift has different optimal condition to increase the production rate. The optimum conditions of continuous gaslift are high productivity 0.5 STB/D/psi and minimum production rate 100 BFPD. Otherwise, the intermittent gas lift has limitations PI and production rate which is lower than continuous gas lift.The results of the analysis are Well AB-1 has production rate gain amount 20.75 BFPD from 23 BFPD became 43.75 BFPD with injected gas volume 200 MSCFPD and total cycle 13 cycle/day. This intermittent gas lift design affected gas injection volume efficiency amount 32%.


2021 ◽  
Vol 73 (05) ◽  
pp. 21-27
Author(s):  
Stephen Rassenfoss

Gas lift is one of the most popular ways to increase oil-well production, and it is no secret that it is an underperformer. Back in 2014, ExxonMobil reported that by creating a team of roving gas-lift experts it was able to add an average of 22% more output on several hundred wells where the gas injection had been optimized. Gains were expected because “wells do not remain the same over time; they change,” said Rodney Bane, global artificial-lift manager at ExxonMobil, in this JPT story covering the 2014 SPE Artificial Lift Conference and Exhibition (https://jpt.spe.org/paying-close-attention-gas-lift-system-can-be-rewarding). The problem with gas injection is that change is hard. Injection adjustment or repairs require either pulling the tubing to reach the injection mandrels or a wireline run. Those with good- producing wells, particularly offshore, need to weigh the possible gain against the cost and lost production during the job. Those managing more and more wells live with iffy data, injection systems prone to malfunction, horizontal wells prone to irregular flows, and a time-consuming process for calculating the proper injection rates. New approaches addressing those negatives have led a few big operators to try new systems designed to allow constant adjustments based on downhole data with electric control systems designed to be more reliable. Programmable digital controls raise an obvious question: How do you take advantage of that capability? Constantly updated injection data based on traditional evaluation methods is the first step. And new capabilities are inspiring new thinking about how injected gas lifts production and how to make it work more efficiently. Optimizing the process has not been a priority in gas lift. “It was a fairly imprecise thing. But the beauty of gas lift is it works even where it’s broken. It’s not a pump; it’s flow assurance,” said Brent Vangolen, surface and base management technology manager with Occidental. Occidental is among the early adopters of new gas-lift methods along with companies including Chevron, Shell, ExxonMobil, Petronas, and ADNOC. Vangolen expects the industry will follow. “Gas lift is going through the same transformation as rod pumps went through in the 60s and 70s,” he said. Back then, rod pump engineers began tracking changes in the load on the rod through each pump stroke by using dynamometer cards. That data was used to better program pump controls. “You went from egg timers on pumping units to full-blown optimization pumpoff controllers, variable speed drives … this huge infant technology that changed the rod pump space,” he said. Papers at last year’s SPE artificial lift conference covered the continuing digitization in rod lift and that gas lift was finally moving in that direction.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Deni Saepudin ◽  
Edy Soewono ◽  
Kuntjoro Adji Sidarto ◽  
Agus Yodi Gunawan ◽  
Septoratno Siregar ◽  
...  

The main objective in oil production system using gas lift technique is to obtain the optimum gas injection rate which yields the maximum oil production rate. Relationship between gas injection rate and oil production rate is described by a continuous gas lift performance curve (GLPC). Obtaining the optimum gas injection rate is important because excessive gas injection will reduce production rate, and also increase the operation cost. In this paper, we discuss a mathematical model for gas lift technique and the characteristics of the GLPC for a production well, for which one phase (liquid) is flowing in the reservoir, and two phases (liquid and gas) in the tubing. It is shown that in certain physical condition the GLPC exists and is unique. Numerical computations indicate unimodal properties of the GLPC. It is also constructed here a numerical scheme based on genetic algorithm to compute the optimum oil production.


2020 ◽  
Vol 1 (2) ◽  
pp. 61
Author(s):  
Ikenna Tobechukwu Okorocha ◽  
Chuka Emmanuel Chinwuko ◽  
Chika Edith Mgbemena ◽  
Chinedum Ogonna Mgbemena

Gas Lift operation involves the injection of compressed gas into a low producing or non-performing well to maximize oil production. The oil produced from a gas lift well is a function of the gas injection rate. The optimal gas injection rate is achieved by optimization. However, the gas lift, which is an artificial lift process, has some drawbacks such as the deterioration of the oil well, incorrect production metering, instability of the gas compressor, and over injection of gas. This paper discusses the various optimization techniques for the gas lift in the Oil and Gas production process. A systematic literature search was conducted on four databases, namely Google Scholar, Scopus, IEE Explore and DOAJ, to identify papers that focused on Gas lift optimizations. The materials for this review were collected primarily via database searches. The major challenges associated with gas lift were identified, and the different optimization strategies available in the literature reviewed. The strategies reviewed were found to be based on artificial intelligence (AI) and machine learning (ML). The implementation of any of the optimization strategies for the gas lift will enhance profitability, reduce operational cost, and extend the life of the wells.


2019 ◽  
Vol 8 (4) ◽  
pp. 9737-9740

In petroleum industry, gas lift optimization is the most important for evaluating the reservoir. By improving the gas lift operation we can save money and time which we spend on the reservoir for effective production. The mainly accepted scenario of gas lift is to maximize production by using minimized cost infrastructure. If the production rate is increased, then the cost of oil production also increases due to the increase in surface facilities and increase in cost of gas compression to higher pressures. The production rate and production cost during gas lift are mutually conflicting in nature i.e., if anyone desires to increase the oil production rate, then at the same time it is difficult to minimize the cost of production. Therefore, this is an ideal candidate for multi-objective optimization study, where production rate needs to maximized while minimizing the cost of production. The oil production rate is calculated using nodal analysis of inflow performance and outflow performance curve while the production cost is calculated using the brake horsepower requirement of the compressor. Oil production rate during a gas lift operation can be defined as a function of various factors like (i) depth of gas injection, (ii) gas injection rate (iii) gas lift injection pressure, (iv) wellhead pressures, (v) bottom hole pressure, (vi) tubing size, (vii) surface choke size/wellhead pressure. Production cost mainly depends on the cost of gas compression which further depends on the pressure up to which gas has to be compressed in the annulus so that the gas lift valve at the bottom of the well opens. The opening of gas lift valve depends on the bottom hole pressure in the tubing i.e. the density of mixture present inside the tubing. The multi-objective gas lift optimization is carried out using multi-objective evolutionary algorithms (EAs) that use non-dominated sorting called elitist non-dominated sorting genetic algorithm (NSGA-II). In this project, we aim to find the optimum values of the decision parameters i.e. gas injection rate and wellhead pressure, for which oil production rate would be maximized while minimizing the cost of oil production.


2021 ◽  
Author(s):  
Valentina Zharko ◽  
Dmitriy Burdakov

Abstract The paper presents the results of a pilot project implementing WAG injection at the oilfield with carbonate reservoir, characterized by low efficiency of traditional waterflooding. The objective of the pilot project was to evaluate the efficiency of this enhanced oil recovery method for conditions of the specific oil field. For the initial introduction of WAG, an area of the reservoir with minimal potential risks has been identified. During the test injections of water and gas, production parameters were monitored, including the oil production rates of the reacting wells and the water and gas injection rates of injection wells, the change in the density and composition of the produced fluids. With first positive results, the pilot area of the reservoir was expanded. In accordance with the responses of the producing wells to the injection of displacing agents, the injection rates were adjusted, and the production intensified, with the aim of maximizing the effect of WAG. The results obtained in practice were reproduced in the simulation model sector in order to obtain a project curve characterizing an increase in oil recovery due to water-alternating gas injection. Practical results obtained during pilot testing of the technology show that the injection of gas and water alternately can reduce the water cut of the reacting wells and increase overall oil production, providing more efficient displacement compared to traditional waterflooding. The use of WAG after the waterflooding provides an increase in oil recovery and a decrease in residual oil saturation. The water cut of the produced liquid decreased from 98% to 80%, an increase in oil production rate of 100 tons/day was obtained. The increase in the oil recovery factor is estimated at approximately 7.5% at gas injection of 1.5 hydrocarbon pore volumes. Based on the received results, the displacement characteristic was constructed. Methods for monitoring the effectiveness of WAG have been determined, and studies are planned to be carried out when designing a full-scale WAG project at the field. This project is the first pilot project in Russia implementing WAG injection in a field with a carbonate reservoir. During the pilot project, the technical feasibility of implementing this EOR method was confirmed, as well as its efficiency in terms of increasing the oil recovery factor for the conditions of the carbonate reservoir of Eastern Siberia, characterized by high water cut and low values of oil displacement coefficients during waterflooding.


2021 ◽  
Author(s):  
Mohammed Ahmed Al-Janabi ◽  
Omar F. Al-Fatlawi ◽  
Dhifaf J. Sadiq ◽  
Haider Abdulmuhsin Mahmood ◽  
Mustafa Alaulddin Al-Juboori

Abstract Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorithm to tackle the challenging task of optimally allocating the gas lift injection rate through numerical modeling and simulation studies to maximize the oil production of a Middle Eastern oil field with 20 production wells with limited amount of gas to be injected. The key objective of this study is to assess the performance of the wells of the field after applying gas lift as an artificial lift method and applying the genetic algorithm as an optimization algorithm while comparing the results of the network to the case of artificially lifted wells by utilizing ESP pumps to the network and to have a more accurate view on the practicability of applying the gas lift optimization technique. The comparison is based on different measures and sensitivity studies, reservoir pressure, and water cut sensitivity analysis are applied to allow the assessment of the performance of the wells in the network throughout the life of the field. To have a full and insight view an economic study and comparison was applied in this study to estimate the benefits of applying the gas lift method and the GA optimization technique while comparing the results to the case of the ESP pumps and the case of naturally flowing wells. The gas lift technique proved to have the ability to enhance the production of the oil field and the optimization process showed quite an enhancement in the task of maximizing the oil production rate while using the same amount of gas to be injected in the each well, the sensitivity analysis showed that the gas lift method is comparable to the other artificial lift method and it have an upper hand in handling the reservoir pressure reduction, and economically CAPEX of the gas lift were calculated to be able to assess the time to reach a profitable income by comparing the results of OPEX of gas lift the technique showed a profitable income higher than the cases of naturally flowing wells and the ESP pumps lifted wells. Additionally, the paper illustrated the genetic algorithm (GA) optimization model in a way that allowed it to be followed as a guide for the task of optimizing the gas injection rate for a network with a large number of wells and limited amount of gas to be injected.


2021 ◽  
Author(s):  
Robert Downey ◽  
Kiran Venepalli ◽  
Jim Erdle ◽  
Morgan Whitelock

Abstract The Permian Basin of west Texas is the largest and most prolific shale oil producing basin in the United States. Oil production from horizontal shale oil wells in the Permian Basin has grown from 5,000 BOPD in February, 2009 to 3.5 Million BOPD as of October, 2020, with 29,000 horizontal shale oil wells in production. The primary target for this horizontal shale oil development is the Wolfcamp shale. Oil production from these wells is characterized by high initial rates and steep declines. A few producers have begun testing EOR processes, specifically natural gas cyclic injection, or "Huff and Puff", with little information provided to date. Our objective is to introduce a novel EOR process that can greatly increase the production and recovery of oil from shale oil reservoirs, while reducing the cost per barrel of recovered oil. A superior shale oil EOR method is proposed that utilizes a triplex pump to inject a solvent liquid into the shale oil reservoir, and an efficient method to recover the injectant at the surface, for storage and reinjection. The process is designed and integrated during operation using compositional reservoir simulation in order to optimize oil recovery. Compositional simulation modeling of a Wolfcamp D horizontal producing oil well was conducted to obtain a history match on oil, gas, and water production. The matched model was then utilized to evaluate the shale oil EOR method under a variety of operating conditions. The modeling indicates that for this particular well, incremental oil production of 500% over primary EUR may be achieved in the first five years of EOR operation, and more than 700% over primary EUR after 10 years. The method, which is patented, has numerous advantages over cyclic gas injection, such as much greater oil recovery, much better economics/lower cost per barrel, lower risk of interwell communication, use of far less horsepower and fuel, shorter injection time, longer production time, smaller injection volumes, scalability, faster implementation, precludes the need for artificial lift, elimination of the need to buy and sell injectant during each cycle, ability to optimize each cycle by integration with compositional reservoir simulation modeling, and lower emissions. This superior shale oil EOR method has been modeled in the five major US shale oil plays, indicating large incremental oil recovery potential. The method is now being field tested to confirm reservoir simulation modeling projections. If implemented early in the life of a shale oil well, its application can slow the production decline rate, recover far more oil earlier and at lower cost, and extend the life of the well by several years, while precluding the need for artificial lift.


Sign in / Sign up

Export Citation Format

Share Document