scholarly journals Production optimization of a network of multiple wells with each well using a combination of Electrical Submersible Pump and Gas lift

Author(s):  
Son Tung Pham ◽  
Dinh Hau Tran

AbstractArtificial lift methods such as ESP and GL are commonly used in oil wells around the world, especially in offshore wells. However, these two methods are normally used separately, and this paper therefore aimed to study the possible combination of ESP and GL by analyzing its effects on energy saving using equivalent depth method and on production rate as well as on ESP life cycle using nodal analysis. The paper also performed the production optimization for a network of wells using each well a combination of GL and ESP. The optimization process consists of selecting the appropriate operation frequency for the ESP system and the injection gas lift distributed to each well with the aim of maximizing the total production of the network. In addition, this optimization process was conducted in two cases: unlimited and limited volume of injection gas lift. In case the GL flow is limited, the BST (Binary Search Tree) algorithm was used to determine the suitable gas rates injected into each well to maximize the total network production. The optimization workflow proposed in this study was applied to the field X in Cuu Long basin of Vietnam and was calibrated from the real data of this field. The results demonstrated the advantage of the combination of ESP and GL in energy saving and in application for small diameter wells. In addition, the workflow and source code will allow engineers to replicate the results and to apply this method for future studies in order to determine optimum operating parameters of this hybrid artificial lift to achieve the highest production rate from a network of multiple wells.

2019 ◽  
Author(s):  
Ahmed Alshmakhy ◽  
Khadija Al Daghar ◽  
Sameer Punnapala ◽  
Shamma AlShehhi ◽  
Abdel Ben Amara ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 75
Author(s):  
Harry Budiharjo Sulistyarso ◽  
KRT Nur Suhascaryo ◽  
Mochamad Jalal Abdul Goni

The MRA platform is one of the offshore platforms located in the north of the Java Sea. The MRA platform has 4 production wells, namely MRA-2ST, MRA-4ST, MRA-5, and MRA-6 wells. The 4 production wells are produced using an artificial lift in the form of a gas lift. The limited gas lift at the MRA Platform at 3.1 MMSCFD makes the production of wells at the MRA Platform not optimal because the wells in the MRA Platform are experiencing insufficient gas lift. Optimization of gas lift injection is obtained by redistribution of gas lift injection for each. The results of the analysis in this study indicate that the optimum gas lift injection for the MRA-2ST well is 0.5552 MMSCFD, the MRA-6 well is 1.0445 MMSCFD, the MRA-5 well is 0.7657 MMSCFD, finally the MRA-4ST well with gas injection. lift is 0.7346 MMSCFD. The manual gas lift in the MRA-4ST is also replaced based on an economic feasibility analysis to ensure that the gas lift injection for each well can be kept constant. The redistribution of gas lift carried out by the author has increased the total production rate of the MRA Platform by 11,160 BO/year or approximately USD 781,200/year. Keywords: Gas lift; Insufficient; Optimization


2018 ◽  
Vol 2 (1) ◽  
pp. 32
Author(s):  
Mia Ferian Helmy

Gas lift is one of the artificial lift method that has mechanism to decrease the flowing pressure gradient in the pipe or relieving the fluid column inside the tubing by injecting amount of gas into the annulus between casing and tubing. The volume of  injected gas was inversely proportional to decreasing of  flowing  pressure gradient, the more volume of gas injected the smaller the pressure gradient. Increasing flowrate is expected by decreasing pressure gradient, but it does not always obtained when the well is in optimum condition. The increasing of flow rate will not occured even though the volume of injected gas is abundant. Therefore, the precisely design of gas lift included amount of cycle, gas injection volume and oil recovery estimation is needed. At the begining well AB-1 using artificial lift method that was continuos gas lift with PI value assumption about 0.5 STB/D/psi. Along with decreasing of production flow rate dan availability of the gas injection in brownfield, so this well must be analyze to determined the appropriate production method under current well condition. There are two types of gas lift method, continuous and intermittent gas lift. Each type of gas lift has different optimal condition to increase the production rate. The optimum conditions of continuous gaslift are high productivity 0.5 STB/D/psi and minimum production rate 100 BFPD. Otherwise, the intermittent gas lift has limitations PI and production rate which is lower than continuous gas lift.The results of the analysis are Well AB-1 has production rate gain amount 20.75 BFPD from 23 BFPD became 43.75 BFPD with injected gas volume 200 MSCFPD and total cycle 13 cycle/day. This intermittent gas lift design affected gas injection volume efficiency amount 32%.


Author(s):  
Sofani Muflih ◽  
Silvya Dewi Rahmawati

<p><span style="font-size: small;"><span style="font-family: Times New Roman;"><em>B-</em><em>X</em><em> well is an oil producing well at Bravo field in Natuna offshore area, which was completed at IBS zone using 5-1/2 inch tubing size. </em><em>However, after several years of production period, the well’s production rate decreased due to reservoir depletion, and experienced gas lift performance problem indicated by unstable flowing condition (slugging flow). In year 2020, Siphon String installation is applied to the well in order to give deeper point of gas lift injection and better well’s production. The additional advantage by having smaller tubing size (insert tubing) is to reduce the slugging flow condition. The analysis of this siphon string installation at the B-X well, technically will be performed by evaluating gas lift performance and the flow regime inside the tubing using a Well Model simulator. The simulation was developed based on the real well condition. Several sensitivity analysis were done through several cases such as: variation in depth of gas lift point of injection, and the length of the siphon string. The simulation was required to evaluate the effectiveness of the existing installation, and to give better recommendation for the other well that has the same problem.  The result indicates that the depth of the current siphon string installation has been providing the optimum production rate, while the slugging flow condition will still be occurred at any given scenario of the siphon string depth due to the very low of well’s productivity. The similar procedure and evaluation can be implemented to other oil wells using gas lift injection located either in offshore or onshore field. </em></span></span></p><p><em><span style="font-family: Times New Roman; font-size: small;"> </span></em></p><p><em><span style="font-family: Times New Roman; font-size: small;">Keywords: Production Optimization, Siphon String, Flow Regime</span></em></p>


Author(s):  
Gabriel A. Alarcón ◽  
Carlos F. Torres-Monzón ◽  
Nellyana Gonzalo ◽  
Luis E. Gómez

Abstract Continuous flow gas lift is one of the most common artificial lift method in the oil industry and is widely used in the world. A continuous volume of gas is injected at high pressure into the bottom of the tubing, to gasify the oil column and thus facilitate the extraction. If there is no restriction in the amount of injection gas available, sufficient gas can be injected into each oil well to reach maximum production. However, the injection gas available is generally insufficient. An inefficient gas allocation in a field with limited gas supply also reduces the revenues, since excessive gas injection is expensive due to the high gas prices and compressing costs. Therefore, it is necessary to assign the injection gas into each well in optimal form to obtain the field maximum oil production rate. The gas allocation optimization can be considered as a maximization of a nonlinear function, which models the total oil production rate for a group of wells. The variables or unknowns for this function are the gas injection rates for each well, which are subject to physical restrictions. In this work a MATLAB™ nonlinear optimization technique with constraints was implemented to find the optimal gas injection rates. A new mathematical fit to the “Gas-Lift Performance Curve” is presented and the numeric results of the optimization are given and compared with results of other methods published in the specialized literature. The optimization technique proved fast convergence and broad application.


Author(s):  
Rahman Ashena ◽  
Mahmood Bataee ◽  
Hamed Jafarpour ◽  
Hamid Abbasi ◽  
Anatoly Zolotukhin ◽  
...  

AbstractProductivity of wells in South-West Iran has decreased due to completion and production problems in recent decades. This is a large risk against sustainable production from the fields. To allow stable production, an important measure is completion and production optimization including artificial lift methods. This was investigated using simulations validated by pilot field tests. Several case studies were considered in terms of their completion and production. Five scenarios were investigated: natural production through annulus and tubing (scenario-1 and 2), artificial gas lift production through annulus (scenario-3), through tubing using non-standard gas lift (scenario-4) and using standard gas lift (scenario-5). Scenario-1 is currently the case in most wells of the field. To find the optimal scenario and completion/production parameters, simulations of 11 wells of an oilfield in the region were carried out using nodal and sensitivity analysis. The optimized parameters include wellhead pressures (WHPs), tubing dimensions, maximum tolerable water cuts and gas oil ratios and artificial gas injection rate. Simulation results were validated by pilot field tests. In addition, appropriately selected wellhead and Christmas trees for all scenarios were depicted. Simulations confirmed by field pilot tests showed that optimization of completion and production mode and parameters can contribute largely to production improvement. The results showed that the current scenario-1 is the worst of all. However, production through tubing (scenario-2) is optimal for wells which can produce with natural reservoir pressure, with an increase of 800 STB/Day rate per well compared with scenario-1. However, for wells requiring artificial gas lift, the average production rate increase (per well) from the annulus to tubing production was 1185 STB/Day. Next, using the standard gas lift (scenario-5) was found to be the optimal mode of gas lifting and is strongly recommended. WHPs in scenario-5 were the greatest of all, whereas scenario-1 gave the lowest WHPs. The optimal tubing diameter and length were determined. The greatest maximum tolerable water cut was obtained using scenario-5, whereas the lowest was with scenario-1. The maximum tolerable GOR was around 1900 scf/STB. Changing of scenarios did not have significant effect on maximum tolerable GOR. The optimal artificial gas injection rates were found. This validated simulation work proved that completion and production optimization of mode and parameters had considerable contribution to production improvement in South-West Iran. This sequential comprehensive work can be applied in any other field or region.


2002 ◽  
Vol 124 (4) ◽  
pp. 262-268 ◽  
Author(s):  
Gabriel A. Alarco´n ◽  
Carlos F. Torres ◽  
Luis E. Go´mez

Continuous flow gas lift is one of the most common artificial lift methods widely used in the oil industry. A continuous volume of high-pressure gas is injected as deep as possible into the tubing, to gasify the oil column, and thus facilitate the production. If there is no restriction in the amount of injection gas available, sufficient gas can be injected into each oil well to reach maximum production. However, the injection gas available is generally insufficient. An inefficient gas allocation in a field with limited gas supply reduces the revenues, since excessive gas injection is expensive due to the high gas prices and compressing costs. Therefore, it is necessary to assign the injection gas into each well in optimal form to obtain the field maximum oil production rate. The gas allocation optimization can be considered as a maximization of a nonlinear function, which models the total oil production rate for a group of wells. The variables or unknowns for this function are the gas injection rates for each well, which are subject to physical restrictions. In this work a nonlinear optimization technique, based on an objective function with constraints, was implemented to find the optimal gas injection rates. A new mathematical fit to the gas-lift performance curve (GLPC) is presented and the numeric results of the optimization are given and compared with those of other methods published in the specialized literature. The GLPC can be either measured in the field, or alternatively generated by computer simulations, by mean of nodal analysis. The optimization technique proved fast convergence and broad application.


2021 ◽  
Author(s):  
Ahmed Alshmakhy ◽  
Yann Bigno ◽  
Talha Saqib ◽  
Moazim Soomro ◽  
Juan Faustinelli ◽  
...  

Abstract Abu Dhabi National Oil Company (ADNOC) is expanding the use of DIAL (Digital Intelligent Artificial Lift) technology, across its assets, through a range of different oil production applications. These include gas lifted single and dual completions, Extended Reach Drilling (ERD) wells and In-Situ gas lift. DIAL is a first-of-kind technology that enhances the efficiency of gas lift through downhole data, surface control and digital operations. This data driven approach enables production automation and minimizes well intervention requirements. This paper will present four different applications for the technology. These applications were selected by ADNOC assets, as they were deemed to bring the most value for DIAL implementation. The paper will describe technical details for each application, including gas lift designs, completion specificities, installation procedures and benefits observed or anticipated. A summary of the value add for each of the four applications are listed below. Gas lifted single completion is the most common application for the DIAL system. The benefits of the application have been described in previous papers and range from intervention savings to production optimization. This paper will highlight the additional benefit of automation, making full use of the system digital features. Gas lifted dual string completion, where the technology enables efficient lift of both strings, improving well production in the range of 40 to 100%. API (American Petroleum Institute) does not recommend pressure operated gas lift in dual wells. DIAL offers stability, simultaneous lifting of both strings through surface control and downhole data. ERD gas lifted well required flexibility for its gas lift operations. DIAL enables real time changes of injection depths based on reservoir response, and units can be installed deeper into the deviated section of the well without any deviation limits. In-Situ gas lift is a specific application where a gas zone is used to lift production from the oil zone in the same well. DIAL enables measurement of the gas injection rate at the point of injection, and adjustment of the flow area to optimize production. This is a world's first use of the technology for this type of application. A range of applications are described in this paper with many technical details, recommendations and lessons learnt to enable replication within the industry. Some of these applications are world first.


2021 ◽  
Author(s):  
M Haziq M Ghazali ◽  
M Rizwan Rozlan ◽  
M Farris Bakar ◽  
M Faizatulizuddin Ishak ◽  
Orient Balbir Samuel ◽  
...  

Abstract PETRONAS completed well H-X on B field in Malaysia with a digital intelligent artificial lift (DIAL) gas lift production optimization system. This DIAL installation represents the first ever successful installation of the technology in an Offshore well for Dual String production. This paper provides complete details of the installation planning and operational process undertaken to achieve this milestone. DIAL is a unique technology that enhances the efficiency of gas lift production. Downhole monitoring of production parameters informs remote surface-controlled adjustment of gas lift valves. This enables automation of production optimization removing the need for well intervention. This paper focusses on a well completed in November 2020, the fourth well to be installed with the DIAL technology across PETRONAS Assets. The authors will provide details of the well and the installation phases: system design, pre-job preparations, improvements implementation, run in hole and surface hook-up. For each phase, challenges encountered, and lessons learned will be listed together with observed benefits. DIAL introduces a paradigm shift in design, installation and operation of gas lifted wells. This paper will briefly highlight the justifications of this digital technology in comparison with conventional gas lift techniques. It will consider value added from the design stage, through installation operations, to production optimization. This DIAL system installation confirms the ability to be implement the technology in a challenging dual string completion design to enable deeper injection while avoiding interventions on a well with a greater than 60-degree deviation. With remotely operated, non-pressure dependent multi-valve in-well gas lift units, the technology removes the challenges normally associated with gas-injected production operation in a dual completion well – gas robbing and multi-pointing. Despite the additional operational & planning complications due to COVID-19 restrictions, the well was completed with zero NPT and LTI. Once brought online, this DIAL-assisted production well will be remotely monitored and controlled ensuring continuous production optimization, part of PETRONAS’ upstream digitization strategic vision.


2018 ◽  
Vol 7 (2) ◽  
pp. 46-54
Author(s):  
Fitrianti Fitrianti ◽  
Dike Fitriansyah Putra ◽  
Desma Cendra

The declining reservoir, oil production and pressure depletion with the well being produced, the results of the investment of the well will also decrease. For that there needs to be energy that can help to lift the fluid to the surface. One of the artificial lift methods that can be used is a gas lift. Gas lift is a method commonly used when there is a natural gas source as an injection gas supply. The selection of the artificial lift method is based on several considerations, namely the reservoir conditions, fluid conditions, well conditions, conditions on the surface, availability of electricity, availability of gas, and sand problem. The influential parameters in the selection of gas lifts include: Productivity Index (PI), Gas Liquid Ratio (GLR), depth of the well and driving mechanism from the reservoir. The Gas Lift that the production optimization wants to do is the injection system in a Continuous Gas Lift. Used in wells that have a high Productifity Index value. Where in the LB field to be analyzed, the Productifity Index value is 2.0 bpd / psi. This study intends to optimize a gaslift well performance as an effort to maximize the results of well production. Based on the research that has been done using Prosper Modeling on the “J” field, the following conclusions are obtained the effect of pressure and viscosity on the gas lift well flow rate in this condition can be said to be efficient, because the conditions / pressure given at temperatures below 300 F can reach the miscible condition and from the results of determining the optimal conditions to get the best well performance, obtain an optimal liquid rate of 1829.4 STB / D with an oil rate of 36.6 STB / D.   Keywords: Gas lift, Optimization, Immiscible Pressure, Viscosity


Sign in / Sign up

Export Citation Format

Share Document