Kinesin family member KIF18A is a critical cellular factor that regulates the differentiation and activation of dendritic cells

2019 ◽  
Vol 42 (1) ◽  
pp. 41-46
Author(s):  
Seyoung Kim ◽  
Yong-Bin Cho ◽  
Chi-une Song ◽  
Seong-il Eyun ◽  
Young-Jin Seo
2010 ◽  
Vol 123 (21) ◽  
pp. 3817-3827 ◽  
Author(s):  
W. Zwart ◽  
V. Peperzak ◽  
E. de Vries ◽  
A. M. Keller ◽  
G. van der Horst ◽  
...  

PLoS Genetics ◽  
2018 ◽  
Vol 14 (11) ◽  
pp. e1007817 ◽  
Author(s):  
Mia J. Konjikusic ◽  
Patra Yeetong ◽  
Curtis W. Boswell ◽  
Chanjae Lee ◽  
Elle C. Roberson ◽  
...  

mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Elliot W. Kim ◽  
Avelino De Leon ◽  
Zhichun Jiang ◽  
Roxana A. Radu ◽  
Adrian R. Martineau ◽  
...  

ABSTRACTEpidemiological evidence correlates low serum vitamin A (retinol) levels with increased susceptibility to active tuberculosis (TB); however, retinol is biologically inactive and must be converted into its bioactive form, all-transretinoic acid (ATRA). Given that ATRA triggers a Niemann-Pick type C2 (NPC2)-dependent antimicrobial response againstMycobacterium tuberculosis, we investigated the mechanism by which the immune system converts retinol into ATRA at the site of infection. We demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived dendritic cells (DCs), but not macrophages, express enzymes in the vitamin A metabolic pathway, including aldehyde dehydrogenase 1 family, member a2 (ALDH1A2) and short-chain dehydrogenase/reductase family, member 9 (DHRS9), enzymes capable of the two-step conversion of retinol into ATRA, which is subsequently released from the cell. Additionally, mRNA and protein expression levels of ALDH1A2 and DC marker CD1B were lower in tuberculosis lung tissues than in normal lung. The conditioned medium from DCs cultured with retinol stimulated antimicrobial activity fromM. tuberculosis-infected macrophages, as well as the expression of NPC2 in monocytes, which was blocked by specific inhibitors, including retinoic acid receptor inhibitor (RARi) orN,N-diethylaminobenzaldehyde (DEAB), an ALDH1A2 inhibitor. These results indicate that metabolism of vitamin A by DCs transactivates macrophage antimicrobial responses.IMPORTANCETuberculosis (TB) is the leading cause of death by a single infectious agent worldwide. One factor that contributes to the success of the microbe is the deficiency in immunomodulatory nutrients, such as vitamin A (retinol), which are prevalent in areas where TB is endemic. Clinical trials show that restoration of systemic retinol levels in active TB patients is ineffective in mitigating the disease; however, laboratory studies demonstrate that activation of the vitamin A pathway inMycobacterium tuberculosis-infected macrophages triggers an antimicrobial response. Therefore, the goal of this study was to determine the link between host retinol levels and retinoic acid-mediated antimicrobial responses againstM. tuberculosis. By combining establishedin vitromodels within situstudies of lung tissue from TB patients, this study demonstrates that the innate immune system utilizes transcellular metabolism leading to activation between dendritic cells and macrophages as a means to combat the pathogen.


2020 ◽  
Vol 19 ◽  
pp. 153303382094321
Author(s):  
Rui Gu ◽  
Xiaodong Li ◽  
Xiaowei Yan ◽  
Zhen Feng ◽  
Aixin Hu

Circular RNAs are a recently discovered subclass of endogenous noncoding RNAs that have been confirmed to play an important role in various pathophysiological processes. However, the underlying function of circular RNAs in osteosarcoma still remains unclear. We aimed to comprehend the function of circ_0032462 in osteosarcoma, as it has been predicted to be highly expressed in osteosarcoma cells. Using real-time polymerase chain reaction, we verified the elevated expression of circ_0032462 in osteosarcoma cells than normal cells. Functional validation experiments revealed that circ_0032462 overexpression promoted proliferation, migration, and invasion in osteosarcoma cells, whereas circ_0032462 silencing was observed to inhibit cancer cell progression (proliferation, migration, and invasion). Furthermore, we found that circ_0032462 upregulated the messenger RNA and protein expression level of kinesin family member 3B. In addition, kinesin family member 3B inhibition was found to inhibit circ_0032462-induced enhanced osteosarcoma cell progression. circ_0032462 overexpression was observed to reverse circ_0032462 silencing-induced inhibitory effect on osteosarcoma cell progression. Overall, our research revealed the function of circ_0032462 in osteosarcoma progression, which might serve as a novel chemotherapeutic target for osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document