scholarly journals Pollution in the Arctic Ocean: An overview of multiple pressures and implications for ecosystem services

AMBIO ◽  
2021 ◽  
Author(s):  
Bryony L. Townhill ◽  
Efstathios Reppas-Chrysovitsinos ◽  
Roxana Sühring ◽  
Crispin J. Halsall ◽  
Elena Mengo ◽  
...  

AbstractThe Arctic is undergoing unprecedented change. Observations and models demonstrate significant perturbations to the physical and biological systems. Arctic species and ecosystems, particularly in the marine environment, are subject to a wide range of pressures from human activities, including exposure to a complex mixture of pollutants, climate change and fishing activity. These pressures affect the ecosystem services that the Arctic provides. Current international policies are attempting to support sustainable exploitation of Arctic resources with a view to balancing human wellbeing and environmental protection. However, assessments of the potential combined impacts of human activities are limited by data, particularly related to pollutants, a limited understanding of physical and biological processes, and single policies that are limited to ecosystem-level actions. This manuscript considers how, when combined, a suite of existing tools can be used to assess the impacts of pollutants in combination with other anthropogenic pressures on Arctic ecosystems, and on the services that these ecosystems provide. Recommendations are made for the advancement of targeted Arctic research to inform environmental practices and regulatory decisions.

2020 ◽  
Vol 24 (9) ◽  
pp. 51-57
Author(s):  
E.V. Abakumov ◽  
A.E. Lemyakina ◽  
V.O. Titov ◽  
A.E. Vashchuk ◽  
Yu.N. Guzov ◽  
...  

Тhe problems of valuation of ecosystem services in connection with the activation of economic activity of the Russian Federation in the Arctic zone are discussed. The types of negative impacts on the Arctic ecosystems and their assessment, investment risks existing in ecosystem services are considered. It is shown that the application of the methodology and apparatus of ecosystem services contributes to the adequate assessment and creation of a hierarchical classification of "usefulness" and "benefits" that society can get from the existence, use and nonuse of ecosystems. The concept of ecosystem services in relation to Arctic consists of three components: identification, monetization and ecological risk assessment. The example of the Arctic ecosystems shows that the susceptibility to assessment and the accuracy of the assessment can be quite different and is largely dependent on the type of service in the classification. The analysis of possible ecosystem services and their relationship with the quality of life of people in the Russian Arctic indicates significant investment risks.


2018 ◽  
Vol 33 (2) ◽  
pp. 361-379
Author(s):  
David Langlet

Abstract The Arctic is subject to increasing levels of human activities and environmental stresses. The need to protect Arctic ecosystems and utilize the region’s resources sustainably necessitates effective and coordinated management of human activities. A potentially important instrument is marine spatial planning (MSP). The article analyses the potential of the European Union (EU) to contribute to the development and implementation of MSP, or related instruments, in the marine Arctic. Although we conclude that EU law relevant to MSP currently has very limited applicability in the region, either directly or through the so-called EEA EFTA States, there are still ways in which the EU may contribute to making activities in the marine Arctic more sustainable. In this context, the EU’s new ‘policy for the Arctic’ could be an important instrument, but it will not by itself affect the region’s development or even guarantee concerted action by the EU Member States.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2017-351 ◽  
Author(s):  
Hilary Robinson ◽  
William Gardiner ◽  
Richard J. Wenning ◽  
Mary Ann Rempel-Hester

ABSTRACT #2017-351 When there is risk for oil release into the marine environment, the priority for planners and responders is to protect human health and to minimize environmental impacts. The selection of appropriate response option(s) depends upon a wide range of information including data on the fate and behavior of oil and treated oil, the habitats and organisms that are potentially exposed, and the potential for effects and recovery following exposure. Spill Impact Management Assessment (SIMA; a refinement of Net Environmental Benefits Analysis, or NEBA, in the context of oil spill response) and similar comparative risk assessment (CRA) approaches provide responders a systematic method to compare and contrast the relative environmental benefits and consequences of different response alternatives. Government and industry stakeholders have used this approach increasingly in temperate and subtropical regions to establish environmental protection priorities and identify response strategies during planning that minimize impacts and maximize the potential for environmental recovery. Historically, the ability to conduct CRA-type assessments in the Arctic has been limited by insufficient information relevant to oil-spill response decision making. However, with an increased interest in shipping and oil and gas development in the Arctic, a sufficiently robust scientific and ecological information base is emerging in the Arctic that can support meaningful SIMA. Based on a summary of over 3,000 literature references on Arctic ecosystems and the fate and effects of oil and treated oil in the Arctic, we identify key input parameters supporting a SIMA evaluation of oil spill response in the Arctic and introduce a web portal developed to facilitate access to the literature and key considerations supporting SIMA.


2013 ◽  
Vol 368 (1624) ◽  
pp. 20120485 ◽  
Author(s):  
G. R. Shaver ◽  
E. B. Rastetter ◽  
V. Salmon ◽  
L. E. Street ◽  
M. J. van de Weg ◽  
...  

Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation (PAR). The model was developed in concert with a survey of the light response of NEE in Arctic and subarctic tundras in Alaska, Greenland, Svalbard and Sweden. Model parametrizations based on data collected in one part of the Arctic can be used to predict NEE in other parts of the Arctic with accuracy similar to that of predictions based on data collected in the same site where NEE is predicted. The principal requirement for the dataset is that it should contain a sufficiently wide range of measurements of NEE at both high and low values of LAI, air temperature and PAR, to properly constrain the estimates of model parameters. Canopy N content can also be substituted for leaf area in predicting NEE, with equal or greater accuracy, but substitution of soil temperature for air temperature does not improve predictions. Overall, the results suggest a remarkable convergence in regulation of NEE in diverse ecosystem types throughout the Arctic.


2017 ◽  
Vol 2017 (1) ◽  
pp. 1325-1344 ◽  
Author(s):  
Hilary Robinson ◽  
William Gardiner ◽  
Richard J. Wenning ◽  
Mary Ann Rempel-Hester

ABSTRACT #2017-351 When there is risk for oil release into the marine environment, the priority for planners and responders is to protect human health and to minimize environmental impacts. The selection of appropriate response option(s) depends upon a wide range of information including data on the fate and behavior of oil and treated oil, the habitats and organisms that are potentially exposed, and the potential for effects and recovery following exposure. Spill Impact Management Assessment (SIMA; a refinement of Net Environmental Benefits Analysis, or NEBA, in the context of oil spill response) and similar comparative risk assessment (CRA) approaches provide responders a systematic method to compare and contrast the relative environmental benefits and consequences of different response alternatives. Government and industry stakeholders have used this approach increasingly in temperate and subtropical regions to establish environmental protection priorities and identify response strategies during planning that minimize impacts and maximize the potential for environmental recovery. Historically, the ability to conduct CRA-type assessments in the Arctic has been limited by insufficient information relevant to oil-spill response decision making. However, with an increased interest in shipping and oil and gas development in the Arctic, a sufficiently robust scientific and ecological information base is emerging in the Arctic that can support meaningful SIMA. Based on a summary of over 3,000 literature references on Arctic ecosystems and the fate and effects of oil and treated oil in the Arctic, we identify key input parameters supporting a SIMA evaluation of oil spill response in the Arctic and introduce a web portal developed to facilitate access to the literature and key considerations supporting SIMA.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Polar Biology ◽  
2020 ◽  
Author(s):  
Renske P. J. Hoondert ◽  
Nico W. van den Brink ◽  
Martine J. van den Heuvel-Greve ◽  
Ad M. J. Ragas ◽  
A. Jan Hendriks

AbstractStable isotopes are often used to provide an indication of the trophic level (TL) of species. TLs may be derived by using food-web-specific enrichment factors in combination with a representative baseline species. It is challenging to sample stable isotopes for all species, regions and seasons in Arctic ecosystems, e.g. because of practical constraints. Species-specific TLs derived from a single region may be used as a proxy for TLs for the Arctic as a whole. However, its suitability is hampered by incomplete knowledge on the variation in TLs. We quantified variation in TLs of Arctic species by collating data on stable isotopes across the Arctic, including corresponding fractionation factors and baseline species. These were used to generate TL distributions for species in both pelagic and benthic food webs for four Arctic areas, which were then used to determine intra-sample, intra-study, intra-region and inter-region variation in TLs. Considerable variation in TLs of species between areas was observed. This is likely due to differences in parameter choice in estimating TLs (e.g. choice of baseline species) and seasonal, temporal and spatial influences. TLs between regions were higher than the variance observed within regions, studies or samples. This implies that TLs derived within one region may not be suitable as a proxy for the Arctic as a whole. The TL distributions derived in this study may be useful in bioaccumulation and climate change studies, as these provide insight in the variability of trophic levels of Arctic species.


AMBIO ◽  
2021 ◽  
Author(s):  
Henry P. Huntington ◽  
Andrey Zagorsky ◽  
Bjørn P. Kaltenborn ◽  
Hyoung Chul Shin ◽  
Jackie Dawson ◽  
...  

AbstractThe Arctic Ocean is undergoing rapid change: sea ice is being lost, waters are warming, coastlines are eroding, species are moving into new areas, and more. This paper explores the many ways that a changing Arctic Ocean affects societies in the Arctic and around the world. In the Arctic, Indigenous Peoples are again seeing their food security threatened and cultural continuity in danger of disruption. Resource development is increasing as is interest in tourism and possibilities for trans-Arctic maritime trade, creating new opportunities and also new stresses. Beyond the Arctic, changes in sea ice affect mid-latitude weather, and Arctic economic opportunities may re-shape commodities and transportation markets. Rising interest in the Arctic is also raising geopolitical tensions about the region. What happens next depends in large part on the choices made within and beyond the Arctic concerning global climate change and industrial policies and Arctic ecosystems and cultures.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Shu Yu ◽  
Cody S. Bekkering ◽  
Li Tian

AbstractWoody plant species represent an invaluable reserve of biochemical diversity to which metabolic engineering can be applied to satisfy the need for commodity and specialty chemicals, pharmaceuticals, and renewable energy. Woody plants are particularly promising for this application due to their low input needs, high biomass, and immeasurable ecosystem services. However, existing challenges have hindered their widespread adoption in metabolic engineering efforts, such as long generation times, large and highly heterozygous genomes, and difficulties in transformation and regeneration. Recent advances in omics approaches, systems biology modeling, and plant transformation and regeneration methods provide effective approaches in overcoming these outstanding challenges. Promises brought by developments in this space are steadily opening the door to widespread metabolic engineering of woody plants to meet the global need for a wide range of sustainably sourced chemicals and materials.


Cosmetics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 48
Author(s):  
Carmen G. Sotelo ◽  
María Blanco ◽  
Patricia Ramos ◽  
José A. Vázquez ◽  
Ricardo I. Perez-Martin

Long life expectancy of populations in the developing world together with some cultural and social issues has driven the need to pay special attention to health and physical appearance. Cosmeceuticals are gaining interest in the cosmetic industry as their uses fulfills a double purpose: the requirements of a cosmetic (clean, perfume, protect, change the appearance of the external parts of the body or keeping them in good condition) with a particular bioactivity function. The cosmetics industry, producing both cosmetics and cosmeceuticals, is currently facing numerous challenges to satisfy different attitudes of consumers (vegetarianism, veganism, cultural or religious concerns, health or safety reasons, eco-friendly process, etc.). A currently growing trend in the market is the interest in products of low environmental impact. Marine origin ingredients are increasingly being incorporated into cosmeceutical preparations because they are able to address several consumer requirements and also due to the wide range of bioactivities they present (antioxidant, whitening, anti-aging, etc.). Many companies claim “Marine” as a distinctive marketing signal; however, only a few indicate whether they use sustainable ingredient sources. Sustainable marine ingredients might be obtained using wild marine biomass through a sustainable extractive fishing activity; by adopting valorization strategies including the use of fish discards and fish by-products; and by sustainably farming and culturing marine organisms.


Sign in / Sign up

Export Citation Format

Share Document