First report of natural infection by two potyviruses on amaryllis (Hippeastrum hybridum) plants from India

VirusDisease ◽  
2021 ◽  
Author(s):  
Aakansha Manav ◽  
Malyaj R. Prajapati ◽  
Jitender Singh ◽  
Amit Kumar ◽  
Pankaj Kumar ◽  
...  
2011 ◽  
Vol 11 (11) ◽  
pp. 1507-1509 ◽  
Author(s):  
Wissem Ghawar ◽  
Mohamed Ali Snoussi ◽  
Nabil Bel Haj Hamida ◽  
Aïcha Boukthir ◽  
Rihab Yazidi ◽  
...  

2013 ◽  
Vol 22 (1) ◽  
pp. 182-185 ◽  
Author(s):  
Nilo Fernandes Leça Júnior ◽  
Valter dos Anjos Almeida ◽  
Fábio Santos Carvalho ◽  
George Rego Albuquerque ◽  
Fabiana Lessa Silva

In order to verify the Trypanosoma cruzi infection in domestic domiciled dogs in a rural endemic area from the south region of the State of Bahia, Polymerase Chain Reaction (PCR) were performed using S35 and S36 primers in 272 dogs living in the district of Vila Operaria, in the municipality of Buerarema. All animals were clinically evaluated; 2.5 mL of blood were collected through venipuncture for the performance of molecular tests. None of these animals showed clinical signs of the illness and only two were identified with the DNA parasite. This result is the first report of natural infection by T. cruzi in domestic dogs in southern Bahia.


Plant Disease ◽  
2009 ◽  
Vol 93 (7) ◽  
pp. 762-762 ◽  
Author(s):  
R. K. Sampangi ◽  
C. Almeyda ◽  
K. L. Druffel ◽  
S. Krishna Mohan ◽  
C. C. Shock ◽  
...  

Penstemons are perennials that are grown for their attractive flowers in the United States. Penstemon species (P. acuminatus, P. deustus, and P. speciosus) are among the native forbs considered as a high priority for restoration of great basin rangelands. During the summer of 2008, symptoms of red spots and rings were observed on leaves of P. acuminatus (family Scrophulariaceae) in an experimental trial in Malheur County, Oregon where the seeds from several native forbs were multiplied for restoration of range plants in intermountain areas. These plants were cultivated as part of the Great Basin Native Plant Selection and Increase Project. Several native wildflower species are grown for seed production in these experimental plots. Plants showed red foliar ringspots and streaks late in the season. Fungal or bacterial infection was ruled out. Two tospoviruses, Impatiens necrotic spot virus and Tomato spotted wilt virus, and one nepovirus, Tomato ring spot virus, are known to infect penstemon (2,3). Recently, a strain of Turnip vein-clearing virus, referred to as Penstemon ringspot virus, was reported in penstemon from Minnesota (1). Symptomatic leaves from the penstemon plants were negative for these viruses when tested by ELISA or reverse transcription (RT)-PCR. However, samples were found to be positive for Cucumber mosaic virus (CMV) when tested by a commercially available kit (Agdia Inc., Elkhart, IN). To verify CMV infection, total nucleic acid extracts from the symptomatic areas of the leaves were prepared and used in RT-PCR. Primers specific to the RNA-3 of CMV were designed on the basis of CMV sequences available in GenBank. The primer pair consisted of CMV V166: 5′ CCA ACC TTT GTA GGG AGT GA 3′ and CMV C563: 5′ TAC ACG AGG ACG GCG TAC TT 3′. An amplicon of the expected size (400 bp) was obtained and cloned and sequenced. BLAST search of the GenBank for related sequences showed that the sequence obtained from penstemon was highly identical to several CMV sequences, with the highest identity (98%) with that of a sequence from Taiwan (GenBank No. D49496). CMV from infected penstemon was successfully transmitted by mechanical inoculation to cucumber seedlings. Infection of cucumber plants was confirmed by ELISA and RT-PCR. To our knowledge, this is the first report of CMV infection of P. acuminatus. With the ongoing efforts to revegetate the intermountain west with native forbs, there is a need for a comprehensive survey of pests and diseases affecting these plants. References: (1) B. E. Lockhart et al. Plant Dis. 92:725, 2008. (2) D. Louro. Acta Hortic. 431:99, 1996. (3) M. Navalinskiene et al. Trans. Estonian Agric. Univ. 209:140, 2000.


Plant Disease ◽  
2002 ◽  
Vol 86 (10) ◽  
pp. 1178-1178 ◽  
Author(s):  
L. J. du Toit ◽  
M. L. Derie ◽  
T. Hsiang ◽  
G. Q. Pelter

Nine fields direct-seeded with onion (Allium cepa L.) were surveyed in central Washington in the spring and summer of 2001 for Botrytis species associated with onion seed crops produced in this semiarid region. Forty plants were sampled from each field in a ‘W’ pattern in April, and 20 plants were similarly sampled from each field in June and July. Each plant was placed in a separate plastic bag, stored at 4 ± 2°C for 3 to 5 weeks, sliced lengthwise using a knife sterilized with 70% ethyl alcohol, incubated in a moist chamber for 5 days, and examined under a dissecting microscope. Fungal growth resembling Botrytis spp. was transferred to acidified potato dextrose agar (PDA) for species identification based on colony morphology, rate of growth, and spore and sclerotium characteristics (3). Cultures were incubated on a laboratory bench at 24 ± 4°C with 8 to 16 h of daylight. A species resembling B. porri (3) was detected in 3 fields in April at an incidence ranging from 3 to 28%, and in 2 of the same 3 fields in each of June and July at incidences ranging from 5 to 10%. Infected plants were asymptomatic at the time of sampling. The isolates formed brown, cerebriform sclerotia and sporulated sparsely. Subsamples of seed harvested from each field were assayed for Botrytis spp. To detect internal infection, 400 seeds from each of the nine fields were soaked in 0.525% NaOCl for 60 s, triple-rinsed in sterile deionized water, air dried, placed on a selective agar medium (2) with 20 seed per 9-cm-diameter petri plate, and incubated at 24°C (12 h day/night) for 14 days. Seeds were examined 5, 10, and 14 days after plating, and fungi resembling Botrytis spp. were transferred to acidified PDA for species determination. Isolates resembling B. porri were detected in 0.75% of seed from two of the three fields in which this species was isolated from plant samples. The internal transcribed spacer 1 region of ribosomal DNA of four isolates of the putative B. porri (two from plant samples and two from seed) were sequenced, and all four sequences matched that of B. porri registered in GenBank (Accession No. Z99666) most closely. Botrytis porri is a pathogen of garlic (A. sativum L.), leek (A. porrum L.), and wild garlic (A. vineale L.), but can infect onion and shallot (A. ascalonicum L.) when inoculated on these hosts (1). To our knowledge, this is the first report of natural infection of onion by B. porri, and the first report of seedborne B. porri on onion. References: (1) W. R. Jarvis. Pathology. Page 62 in: Botryotinia and Botrytis Species: Taxonomy, Physiology, and Pathogenicity. Canada Department of Agriculture, Monograph No. 15, 1977. (2) G. Kritzman and D. Netzer. Phytoparasitica 6:3, 1978. (3) A. H. Presly. Plant Pathol. 34:422, 1985.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1582-1582 ◽  
Author(s):  
I. Mavrič Pleško ◽  
M. Viršček Marn ◽  
K. Nyerges ◽  
J. Lázár

Raspberry bushy dwarf virus (RBDV) is the sole member of genus Idaeovirus and naturally infects Rubus species worldwide. It can be experimentally transmitted to many dicotyledonous plant species from different families. In Slovenia it has been reported to naturally infect grapevine, the first known non-Rubus natural host (3). However, RBDV from red raspberry and grapevine were found to be different in biological, serological, and molecular characteristics (4). From 2007 to 2010, grapevine (Vitis vinifera L.) vineyards were sampled in different parts of Hungary and tested for RBDV infection by double antibody sandwich (DAS)-ELISA using commercial reagents (Bioreba, Reinach, Switzerland). Overall, 181 samples were collected from 10 vineyards around Csörnyeföld, Badacsony, Eger, Tolcsva (Orémus), and Nagyréde. Samples were taken randomly unless plants showing virus-like symptoms were present, which were preferentially included in the survey. Two samples collected in 2010, each consisting of five leaves from five individual plants, tested positive by DAS-ELISA. They originated from a small private vineyard of Italian Riesling, Pinot Gris, and Rhein Riesling in the southwestern part of Hungary near Csörnyeföld where 29 samples were collected. All leaves were asymptomatic. Total RNA was extracted from positive samples using a RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). cDNA was synthesized using primer RNA12 as described (4) and further amplified by PCR using primers RBDVUP1/RBDVLO4 that amplified an 872-bp fragment of RBDV coat protein and 3′ non-translated region (2). Amplification products from both samples were directly sequenced (Macrogen, Seoul, Korea). The sequences showed 98.6% identity between each other and were deposited in GenBank (Accession Nos. JQ928628 and JQ928629). Sequences were also compared with RBDV sequences deposited in GenBank. They showed 97.7 to 99.3% identity with RBDV sequences from grapevine from Slovenia and 94.2 to 96.1% with RBDV sequences from Rubus sp. Natural infection of grapevine with RBDV was first reported from Slovenia in 2003 (3) and was recently reported also from Serbia (1). To our knowledge, this is the first report of RBDV infection of grapevine in Hungary and suggests a wider presence of the virus in the region. References: (1) D. Jevremovic and S. Paunovic. Pestic. Phytomed. (Belgrade) 26:55, 2011. (2) H. I. Kokko et al. BioTechniques 20:842, 1996. (3) I. Mavric Pleško et al. Plant Dis. 87:1148, 2003. (4) I. Mavric Pleško et al. Eur. J. Plant Pathol. 123:261, 2009.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1582-1582 ◽  
Author(s):  
S. Vitale ◽  
L. Luongo ◽  
M. Galli ◽  
A. Belisario

The genus Viburnum comprises over 150 species of shrubs and small trees such as Laurustinus (Viburnum tinus L.), which is one of the most widely used ornamental plants in private and public gardens. Furthermore, it commonly forms stands of natural woodland in the Mediterranean area. In autumn 2012, a survey was conducted to determine the presence of Phytophthora ramorum on Viburnum in commercial nurseries in the Latium region where wilting, dieback, and death of twigs were observed on 30% of the Laurustinus plants. A Phytophthora species was consistently recovered from soil rich in feeder roots from potted Laurustinus plants showing symptoms. Soil samples were baited with rhododendron leaves. Small pieces of leaf tissue cut from the margin of lesions were plated on P5ARPH selective medium (4). Pure cultures, obtained by single-hypha transfers on potato dextrose agar (PDA), were petaloid. Sporangia formation was induced on pepper seeds (3). Sporangia were almost spherical, ovoid or obpyriform, non-papillate and non-caducous, measuring 36.6 to 71.4 × 33.4 to 48.3 μm (average 53.3 × 37.4 μm) with a length/width ratio of 1.4. Chlamydospores were terminal and 25.2 to 37.9 μm in diameter. Isolates were considered heterothallic because they did not produce gametangia in culture or on the host. All isolates examined had 30 to 35°C as optimum temperatures. Based on these morphological characteristics, the isolates were identified as Phytophthora hydropathica (2). Morphological identification was confirmed by internal transcribed spacer (ITS), and mitochondrial partial cytochrome oxidase subunit 2 (CoxII) with BLAST analysis in the NCBI database revealing 99% identity with ITS and 100% identity with CoxII. The sequences of the three isolates AB234, AB235, and AB236 were deposited in European Nucleotide Archive (ENA) with the accession nos. HG934148, HG934149, and HG934150 for ITS and HG934151, HG934152, and HG934153 for CoxII, respectively. Pathogenicity tests were conducted in the greenhouse on a total of six 1-year-old shoots cut from V. tinus plants with two inoculation points each. Mycelial plugs cut from the margins of actively growing 8-day-old cultures on PDA were inserted through the epidermis into the phloem. Controls were treated as described above except that sterile PDA plugs replaced the inoculum. Shoots were incubated in test tubes with sterile water in the dark at 24 ± 2°C. After 2 weeks, lesions were evident at the inoculation points and symptoms were similar to those caused by natural infection. P. hydropathica was consistently re-isolated from the margin of lesions, while controls remained symptomless. In the United States in 2008, P. hydropathica was described as spreading from irrigation water to Rhododendron catawbiense and Kalmia latifolia (2). This pathogen can also attack several other horticultural crops (1), but to our knowledge, this is the first report of P. hydropathica causing wilting and shoot dieback on V. tinus. References: (1) C. X. Hong et al. Plant Dis. 92:1201, 2008. (2) C. X. Hong et al. Plant Pathol. 59:913, 2010. (3) E. Ilieva et al. Eur. J. Plant Path. 101:623, 1995. (4) S. N. Jeffers and S. B. Martin. Plant Dis. 70:1038, 1986.


2010 ◽  
Vol 11 (1) ◽  
pp. 46 ◽  
Author(s):  
Helen M. Griffiths ◽  
Thomas A. Zitter ◽  
Kent Loeffler ◽  
Walter S. De Jong ◽  
Sandra Menasha

Colletotrichum coccodes commonly causes blemish type symptoms on potato tubers. This is the first report in North America of natural infection of tubers by C. coccodes causing sunken lesions during storage. Accepted for publication 31 May 2010. Published 8 July 2010.


Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 3086-3086
Author(s):  
Y. B. Basavaraj ◽  
Jyoti Siwach ◽  
Ashwini Kumar ◽  
Ajay Bhattarai ◽  
Nayeem Qayoom ◽  
...  

Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1152-1152 ◽  
Author(s):  
S. Pavlovic ◽  
M. Starovic ◽  
S. Stojanovic ◽  
G. Aleksic ◽  
S. Kojic ◽  
...  

Pot marigold (Calendula officinalis L.) is native to southern Europe. Compounds of marigold flowers exhibit anti-inflammatory, anti-tumor-promoting, and cytotoxic activities (4). In Serbia, pot marigold is cultivated as an important medicinal and ornamental plant. Typical phyllody, virescence, proliferation of axillary buds, and witches' broom symptoms were sporadically observed in 2011 in Pancevo plantation, Serbia (44°51′49″ N, 20°39′33″ E, 80 m above sea level). Until 2013, the number of uniformly distributed affected pot marigold plants reached 20% in the field. Due to the lack of seed production, profitability of the cultivation was seriously affected. Leaf samples from 10 symptomatic and 4 symptomless marigold plants were collected and total nucleic acid was extracted from midrib tissue (3). Direct PCR and nested PCR were carried out with primer pairs P1/16S-SR and R16F2n/R16R2n, respectively (3). Amplicons 1.5 and 1.2 kb in length, specific for the 16S rRNA gene, were amplified in all symptomatic plants. No PCR products were obtained when DNA isolated from symptomless plants was used. Restriction fragment length polymorphism (RFLP) patterns of the 1.2-kb fragments of 16S rDNA were determined by digestion with four endonucleases separately (TruI1, AluI, HpaII, and HhaI) and compared with those of Stolbur (Stol), Aster Yellows (AY), Flavescence dorée-C (FD-C), Poinsettia Branch-Inducing (PoiBI), and Clover Yellow Edge (CYE) phytoplasmas (2). RFLP patterns from all symptomatic pot marigold plants were identical to the Stol pattern, indicating Stolbur phytoplasma presence in affected plants. The 1.2-kb amplicon of representative Nv8 strain was sequenced and the data were submitted to GenBank (accession no. KJ174507). BLASTn analysis of the sequence was compared with sequences available in GenBank, showing 100% identity with 16S rRNA gene of strains from Paeonia tenuifolia (KF614623) and corn (JQ730750) from Serbia, and peach (KF263684) from Iran. All of these are members of the 16SrXII ‘Candidatus Phytoplasma solani’ group, subgroup A (Stolbur). Phytoplasmas belonging to aster yellows (16SrI) (Italy and Canada) and peanut witches' broom related phytoplasma (16SrII) group (Iran) have been identified in diseased pot marigold plants (1). To our knowledge, this is the first report of natural infection of pot marigold by Stolbur phytoplasma in Serbia. References: (1) S. A. Esmailzadeh-Hosseini et al. Bull. Insectol. 64:S109, 2011. (2) I. M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (3) J. P. Prince. Phytopathology 83:1130, 1993. (4) M. Ukiya et al. J. Nat. Prod. 69:1692, 2006.


Sign in / Sign up

Export Citation Format

Share Document