scholarly journals Assessment of the GPM and TRMM Precipitation Products Using the Rain Gauge Network over the Tibetan Plateau

2018 ◽  
Vol 32 (2) ◽  
pp. 324-336 ◽  
Author(s):  
Sijia Zhang ◽  
Donghai Wang ◽  
Zhengkun Qin ◽  
Yaoyao Zheng ◽  
Jianping Guo
2018 ◽  
Vol 10 (8) ◽  
pp. 1316 ◽  
Author(s):  
Peng Bai ◽  
Xiaomang Liu

The sparse rain gauge networks over the Tibetan Plateau (TP) cause challenges for hydrological studies and applications. Satellite-based precipitation datasets have the potential to overcome the issues of data scarcity caused by sparse rain gauges. However, large uncertainties usually exist in these precipitation datasets, particularly in complex orographic areas, such as the TP. The accuracy of these precipitation products needs to be evaluated before being practically applied. In this study, five (quasi-)global satellite precipitation products were evaluated in two gauge-sparse river basins on the TP during the period 1998–2012; the evaluated products are CHIRPS, CMORPH, PERSIANN-CDR, TMPA 3B42, and MSWEP. The five precipitation products were first intercompared with each other to identify their consistency in depicting the spatial–temporal distribution of precipitation. Then, the accuracy of these products was validated against precipitation observations from 21 rain gauges using a point-to-pixel method. We also investigated the streamflow simulation capacity of these products via a distributed hydrological model. The results indicated that these precipitation products have similar spatial patterns but significantly different precipitation estimates. A point-to-pixel validation indicated that all products cannot efficiently reproduce the daily precipitation observations, with the median Kling–Gupta efficiency (KGE) in the range of 0.10–0.26. Among the five products, MSWEP has the best consistency with the gauge observations (with a median KGE = 0.26), which is thus recommended as the preferred choice for applications among the five satellite precipitation products. However, as model forcing data, all the precipitation products showed a comparable capacity of streamflow simulations and were all able to accurately reproduce the observed streamflow records. The values of the KGE obtained from these precipitation products exceed 0.83 in the upper Yangtze River (UYA) basin and 0.84 in the upper Yellow River (UYE) basin. Thus, evaluation of precipitation products only focusing on the accuracy of streamflow simulations is less meaningful, which will mask the differences between these products. A further attribution analysis indicated that the influences of the different precipitation inputs on the streamflow simulations were largely offset by the parameter calibration, leading to significantly different evaporation and water storage estimates. Therefore, an efficient hydrological evaluation for precipitation products should focus on both streamflow simulations and the simulations of other hydrological variables, such as evaporation and soil moisture.


2006 ◽  
Vol 7 ◽  
pp. 181-188 ◽  
Author(s):  
H. Feidas ◽  
G. Kokolatos ◽  
A. Negri ◽  
M. Manyin ◽  
N. Chrysoulakis

Abstract. The aim is to evaluate the use of a satellite infrared (IR) technique for estimating rainfall over the eastern Mediterranean. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the Eastern Mediterranean for four rain events during the six month period of October 2004 to March 2005. Estimates from this technique are verified over a rain gauge network for different time scales. Results show that PR observations can be applied to improve IR-based techniques significantly in the conditions of a regional scale area by selecting adequate calibration areas and periods. They reveal, however, the limitations of infrared remote sensing techniques, originally developed for tropical areas, when applied to precipitation retrievals in mid-latitudes.


2020 ◽  
Vol 12 (13) ◽  
pp. 2114
Author(s):  
Christine Kolbe ◽  
Boris Thies ◽  
Nazli Turini ◽  
Zhiyu Liu ◽  
Jörg Bendix

We present the new Precipitation REtrieval covering the TIbetan Plateau (PRETIP) as a feasibility study using the two geostationary (GEO) satellites Elektro-L2 and Insat-3D with reference to the GPM (Global Precipitation Measurement Mission) IMERG (Integrated Multi-satellitE Retrievals for GPM) product. The present study deals with the assignment of the rainfall rate. For precipitation rate assignment, the best-quality precipitation estimates from the gauge calibrated microwave (MW) within the IMERG product were combined with the GEO data by Random Forest (RF) regression. PRETIP was validated with independent MW precipitation information not considered for model training and revealed a good performance on 30 min and 11 km spatio-temporal resolution with a correlation coefficient of R = 0.59 and outperforms the validation of the independent MW precipitation with IMERG’s IR only product (R = 0.18). A comparison of PRETIP precipitation rates in 4 km resolution with daily rain gauge measurements from the Chinese Ministry of Water Resources revealed a correlation of R = 0.49. No differences in the performance of PRETIP for various elevation ranges or between the rainy (July, August) and the dry (May, September) season could be found.


2012 ◽  
Vol 9 (8) ◽  
pp. 9503-9532 ◽  
Author(s):  
Y. C. Gao ◽  
M. F. Liu

Abstract. High-resolution satellite precipitation products are very attractive for studying the hydrologic processes in mountainous areas where rain gauges are generally sparse. Three high-resolution satellite precipitation products are evaluated using gauge measurements over different climate zones of the Tibetan Plateau (TP) within a 6 yr period from 2004 to 2009. The three satellite-based precipitation datasets are: Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), Climate Prediction Center Morphing Technique (CMOPRH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network (PERSIANN). TMPA and CMORPH, with higher correlation coefficients and lower root mean square errors (RMSEs), show overall better performance than PERSIANN. TMPA has the lowest biases among the three precipitation datasets, which is likely due to the correction process against monthly gauge observations from global precipitation climatology project (GPCP). The three products show better agreement with gauge measurements over humid regions than that over arid regions where correlation coefficients are less than 0.5. Moreover, the three precipitation products generally tend to overestimate light rainfall (0–10 mm) and underestimate moderate and heavy rainfall (>10 mm). PERSIANN produces obvious underestimation at low elevations and overestimation at high elevations. CMORPH and TMPA do not present strong bias-elevation relationships in most regions of TP.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Gefei Wang ◽  
Xiaowen Zhang ◽  
Shiqiang Zhang

Evaluation of different reanalysis precipitation datasets is of great importance to understanding the hydrological processes and water resource management practice in the Qinling-Daba Mountains (QDM), located at the eastern fringe of the Tibetan Plateau. Although the evaluation of satellite precipitation data in this region has been performed, another kind of popular precipitation product-reanalysis dataset has not been assessed in depth. Three popular reanalysis precipitation datasets, including ERA-Interim Reanalysis of European Centre for Medium Forecasts (ERA-Interim), Japanese 55-year Reanalysis (JRA-55), and National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis-1 (NCEP/NCAR-1) were evaluated against rain gauge data over the Qinling-Daba Mountains from 2000 to 2014 on monthly, seasonal, and annual scales. Different statistical measures based on the Correlation Coefficient (CC), relative BIAS (BIAS), Root-Mean-Square Error (RMSE), and Mean Absolute Error (MAE) were adopted to determine the performance of the above reanalysis datasets. Results show that ERA-Interim and JRA-55 have good performance on a monthly scale and annual scale. However, the NCEP/NCAR-1 has the least BIAS with the observed precipitation in annual scale in QDM. All reanalysis datasets performed better in spring, summer, and autumn than in winter. The advantages of involving more precipitation observation stations was probably the main reason of the different performance of three precipitation reanalysis products, and the benefit of a four-dimensional variational analysis model over a three-dimensional variational analysis model may be another reason. The evaluation suggested that ERA-Interim is more suitable for study the precipitation and water cycles in the QDM.


2012 ◽  
Vol 30 (11) ◽  
pp. 1575-1586 ◽  
Author(s):  
◽  
◽  
◽  

Abstract. In this study, the Weather Research and Forecasting model was used to simulate the diurnal variation in summer precipitation over the Tibetan Plateau (TP) at a cloud-resolving scale. Compared with the TRMM, precipitation data shows that the model can well simulate the diurnal rainfall cycle with an overall late-afternoon maximum precipitation in the central TP and a nighttime maximum in the southern edge. The simulated diurnal variations in regional circulation and thermodynamics are in good correspondence with the precipitation diurnal cycles in the central and southern edge of TP, respectively. A possible mechanism responsible for the nocturnal precipitation maximum in the southern edge has been proposed, indicating the importance of the TP in regulating the regional circulation and precipitation.


2016 ◽  
Vol 48 (3) ◽  
pp. 822-839 ◽  
Author(s):  
Denghua Yan ◽  
Shaohua Liu ◽  
Tianling Qin ◽  
Baisha Weng ◽  
Chuanzhe Li ◽  
...  

The Tibetan Plateau (TP) is the roof of the world and water towers of Asia. However, research on hydrological processes is restricted by the sparse gauge network in the TP. The distributed hydrological model is an efficient tool to explore hydrological processes. Meanwhile, the spatial distribution of precipitation directly affects the precision of distributed hydrological modelling. The latest TRMM 3B42 (V7) precipitation was evaluated compared with gauge precipitation at station and basin scales in the Naqu River Basin of the TP. The results show that Tropical Rainfall Measuring Mission (TRMM) precipitation overestimated the precipitation with BIAS of 0.2; the intensity distributions of daily precipitation are consistent in the two precipitation data. TRMM precipitation was then corrected by the good linear relation between monthly areal TRMM precipitation and gauge precipitation, and applied into the Water and Energy Process model. The results indicate that the simulated streamflow using both precipitation data produce a good fit with observed streamflow, especially at monthly scale. Furthermore, the better relations between average slopes and runoff coefficients of sub-basins from the corrected TRMM precipitation-based model implies that the spatial distribution of TRMM precipitation is closer to the spatial distribution of actual precipitation, and has an advantage in driving distributed hydrological models.


2020 ◽  
Author(s):  
Jun Wen ◽  
Zhongbo Su ◽  
Donghai Zheng ◽  
Xin Wang

<p>Surface soil moisture and freeze/thaw state monitoring is essential for quantifying water and heat exchanges in cold regions, e.g. the Tibetan Plateau. L-band (1.4 GHz, 21 cm) radiometry is recognized as one of the best suitable techniques for global monitoring of soil moisture and freeze-thaw dynamics. This study reports a long term ground-based L-band radiometry measurements conducted in a seasonally frozen grassland site located in the northeastern part of the Tibetan Plateau. The ESA funded ELBARA-III radiometer is deployed in a Tibetan meadow ecosystem where a well-instrumented in-situ soil moisture and soil temperature (SMST) monitoring network was developed. The network holds 20 SMST profile measurement stations, and each station records every 15-min readings of 5TM ECH2O probes installed at soil depths of 5, 10, 20, 40, and 80 cm. The ELBARA-III radiometer has been deployed in the center of the SMST network at the beginning of 2016. The L-band radiometer is mounted on a tower with a height of 4.8m, and the antenna beam waist is about 6.5m above the surface. Brightness temperature (T<sub>B</sub>) measurements with vertical and horizontal polarizations are performed every 30 min at observation angles of 40° to 70° in steps of 5°. A sky measurement with an observation angle of 155° is performed once per day for calibration purposes next to the internal calibration sequence performed as part of every measurement run. The internal calibration adopted to derive the T<sub>B</sub> from the raw data is based on a two-point calibration strategy using a resistive load (RL) and an active cold load (ACL). A vertically dense SMST measurement profile is installed next to the radiometer tower. Concurrent measurements of micrometeorological variables are also performed in vicinity of the radiometer tower, such as solar radiation, wind speed, air temperature, air pressure, and humidity. A rain gauge and eddy-covariance system are setup in the ELBARA-III field site at the end of 2016 providing precipitation and surface heat flux measurements. Preliminary analysis of the ELBARA-III T<sub>B</sub> measurements will be given in this study.</p>


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Kunyu Teng ◽  
Hongke Cai ◽  
Xiubin Sun ◽  
Quanliang Chen

This paper examines the basic geometric and physical characteristics of precipitation clouds over the Tibetan Plateau, based on the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data from 1998 to 2015, using the minimum bounding rectangle (MBR) method. The results show that about 60% of the precipitation clouds occur with a scale of approximately 18 km (length) and 15 km (width), and the proportion of precipitation clouds with a length longer than 100 km and a width wider than 90 km is less than 1%. Most of the precipitation cloud exhibits a shape between square and long strips in the horizontal direction and lanky in the vertical direction. The average rainfall intensity of precipitation clouds is between 0.5 and 6 mm h−1. The average length and width of precipitation clouds show a logarithmic, linear relationship. The distribution of raindrops in precipitation clouds is relatively compact. With the expansion of the area, the precipitation clouds gradually become squatty. The relationship between physical and geometric parameters of precipitation clouds shows that with the precipitation cloud area expanding, the average rainfall rate of precipitation clouds also increases. Heavy convective rainfall is more likely to occur in larger precipitation clouds. For the precipitation clouds of the same size, the area fraction and contribution of convective precipitation are lower than that of stratiform precipitation.


Sign in / Sign up

Export Citation Format

Share Document