Analysis of excessive deformation behavior of a PMMA-touch screen panel laminated material in a high temperature condition

2011 ◽  
Vol 23 (4) ◽  
pp. 195-204 ◽  
Author(s):  
Hyeon Lee ◽  
Jaeyoon Wang ◽  
Seon-Mi Park ◽  
Seokmoo Hong ◽  
Naksoo Kim
2020 ◽  
Vol 13 (9) ◽  
pp. 095504
Author(s):  
Ayumu Shimizu ◽  
Shintaro Tsuno ◽  
Masahiro Kamiyama ◽  
Keiju Ishibashi ◽  
Akira Kitamoto ◽  
...  

2019 ◽  
Vol 15 (4) ◽  
pp. 308-317
Author(s):  
Mei Ling Ng ◽  
Zaidah binti Rahmat ◽  
Mohd Shahir Shamsir bin Omar

Background: Orthosiphon stamineus is a traditional medicinal plant in Southeast Asia countries with various well-known pharmacological activities such as antidiabetic, diuretics and antitumor activities. Transketolase is one of the proteins identified in the leaves of the plant and transketolase is believed able to lower blood sugar level in human through non-pancreatic mechanism. In order to understand the protein behavioral properties, 3D model of transketolase and analysis of protein structure are of obvious interest. Methods: In the present study, 3D model of transketolase was constructed and its atomic characteristics revealed. Besides, molecular dynamic simulation of the protein at 310 K and 368 K deciphered transketolase may be a thermophilic protein as the structure does not distort even at elevated temperature. This study also used the protein at 310 K and 368 K resimulated back at 310 K environment. Results: The results revealed that the protein is stable at all condition which suggest that it has high capacity to adapt at different environment not only at high temperature but also from high temperature condition to low temperature where the structure remains unchanged while retaining protein function. Conclusion: The thermostability properties of transketolase is beneficial for pharmaceutical industries as most of the drug making processes are at high temperature condition.


Author(s):  
Si-Hwa Jeong ◽  
Min-Gu Won ◽  
Nam-Su Huh ◽  
Yun-Jae Kim ◽  
Young-Jin Oh ◽  
...  

In this paper, the thermal stress characteristics of the pipe-in-pipe (PIP) system under high temperature condition are analyzed. The PIP is a type of pipe applied in sodium-cooled faster reactor (SFR) and has a different geometry from a single pipe. In particular, under the high temperature condition of the SFR, the high thermal stress is generated due to the temperature gradient occurring between the inner pipe and outer pipe. To investigate the thermal stress characteristics, three cases are considered according to geometry of the support. The fully constrained support and intermediate support are considered for case 1 and 2, respectively. For case 3, both supports are applied to the actual curved pipe. The finite element (FE) analyses are performed in two steps for each case. Firstly, the heat transfer analysis is carried out considering the thermal conduction, convection and radiation conditions. From the heat transfer analysis, the temperature distribution results in the piping system are obtained. Secondly, the structural analysis is performed considering the temperature distribution results and boundary conditions. Finally, the effects of the geometric characteristics on the thermal stress in the PIP system are analyzed.


2004 ◽  
Vol 449-452 ◽  
pp. 57-60
Author(s):  
I.G. Lee ◽  
A.K. Ghosh

In order to analyze high temperature deformation behavior of NiAl alloys, deformation maps were constructed for stoichiometric NiAl materials with grain sizes of 4 and 200 µm. Relevant constitute equations and calculation method will be described in this paper. These maps are particularly useful in identifying the location of testing domains, such as creep and tensile tests, in relation to the stress-temperature-strain rate domains experienced by NiAl.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1614
Author(s):  
Hongqiang Liu ◽  
Zhicheng Cheng ◽  
Wei Yu ◽  
Gaotian Wang ◽  
Jie Zhou ◽  
...  

High-temperature reduction pretreatment (HTRP) is a process that can significantly improve the core quality of a billet. The existing flow stress data cannot meet the needs of simulation due to lack of high temperature data. To obtain the hot forming process parameters for the high-temperature reduction pretreatment process of 42CrMo steel, a hot compression experiment of 42CrMo steel was conducted on Gleeble-3500 thermal-mechanical at 1200–1350 °C with the rates of deformation 0.001–10 s−1 and the deformation of 60%, and its deformation behavior at elevated temperature was studied. In this study, the effects of flow stress temperature and strain rate on austenite grain were investigated. Moreover, two typical constitutive models were employed to describe the flow stress, namely the Arrhenius constitutive model of strain compensation and back propagation artificial neural network (BP ANN) model. The performance evaluation shows that BP ANN model has high accuracy and stability to predict the curve. The thermal processing maps under strains of 0.1, 0.2, 0.3, and 0.4 were established. Based on the analysis of the thermal processing map, the optimal high reduction process parameter range of 42CrMo is obtained: the temperature range is 1250–1350 °C, and the strain rate range is 0.01–1 s−1.


Sign in / Sign up

Export Citation Format

Share Document