Experimental Investigation on Tool Wear in AISI H13 Die Steel Turning Using RSM and ANN Methods

Author(s):  
R. Suresh ◽  
Ajith G. Joshi ◽  
M. Manjaiah
Author(s):  
S Kumar ◽  
R Singh ◽  
T P Singh ◽  
B L Sethi

The electrical discharge machining (EDM) process is extensively used in the tool and die making industry for accurate machining of internal profiles in hardened materials. Although it is essentially a material removal process, efforts have been made in the recent past to use it as surface treatment method. This article investigates and compares the effect of material transfer from electrode bodies (copper, copper—chromium, and copper—tungsten) and tungsten powder suspended in the dielectric medium during die-sinking EDM of AISI H13 die steel. Results show a 76 per cent increase in micro-hardness by machining with a copper—tungsten electrode and a 111 per cent increase by machining with tungsten powder mixed in the dielectric. The copper—chromium electrode gives the best surface roughness (Ra) value of 2.67 μ m. Scanning electron microscopy and X-ray diffraction analysis of the machined surfaces show alloying of parent material with tungsten and tungsten carbide. Chemical composition of the machined surfaces was further checked on an optical emission spectrometer to verify the results. Besides a significant presence of tungsten, an increase in the percentage of carbon is also observed.


2007 ◽  
Vol 28 (1) ◽  
pp. 272-277 ◽  
Author(s):  
Hong Yan ◽  
J. Hua ◽  
R. Shivpuri

Author(s):  
Vishal Jagota ◽  
Rajesh Kumar Sharma ◽  
Rakesh Sehgal

Austenitizing temperature is of great importance to achieve the desired properties of die steel. It governs the number of carbides dissolved in the austenitic matrix, which later transforms to martensite. This paper intends to find out the impact of austenitizing temperature on the wear behaviour of AISI H13 die steel. Austenitizing of H13 steel is done at different temperatures, i.e., 1000 °C, 1020 °C, 1040 °C, 1060 °C and then tempering is done twice at 560 °C for two hours. H13 die steel when tempered after austenitizing at 1020 °C lath martensite of large size is produced. Whereas, quite smaller lath martensitic structure has been observed in H13 die steel tempered after austenitizing at 1060 °C. Wear test investigation carried out using a pin on disc tribometer for H13 steel pins austenitized at different temperatures against D2 steel disc having 61 HRC. It is observed that the wear volume of H13 die steel exhibits an inverse linear relationship with its austenitizing temperature due to an increase in hardness. It is seen that small protective layer like patches of oxidized debris formed on the worn surface of H13 steel austenitized at 1060 °C. Whereas, no such protective layer formation is found on H13 die steel austenitized at a lower temperature. Post wear test, subsurface cross-section study shows plastic deformation of grains just beneath the worn surface along the direction of wear tracks. H13 die steel austenitized at 1060 °C with larger grains shows plastic deformation of grains up to a greater depth. Whereas, H13 die steel austenitized at 1000 °C with finer grain exhibits plastic deformation up to a lesser depth. An increase in grain boundaries of nearly twice is also found below the worn subsurface up to 80 to 100 µm depth. The present study will help to select the austenitizing temperature for H13 die steel to have better wear resistance.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7863
Author(s):  
Tarang Shinde ◽  
Catalin Pruncu ◽  
Narendra B. Dhokey ◽  
Anca C. Parau ◽  
Alina Vladescu

AISI H13 die steel specimens were subjected to heating at 1020 °C followed by oil quenching and double tempering at 520 °C. Subsequently, these specimens were subjected to deep cryogenic treatment at −185 °C in liquid nitrogen environment for 16 h and then subjected to soft tempering at 100 °C once the specimens attained room temperature. Thereafter, the specimens were subjected to scanning electron microscopy (SEM) analysis and electron backscatter diffraction (EBSD) analysis. The electrochemical corrosion activity was investigated in 3.5% NaCl at 23 ± 0.5 °C by evaluating the evolution of open circuit potential over time and potentiodynamic curves, and electrochemical impedance spectroscopy study was also carried out. The heat-treated specimens exhibited better resistance to corrosion through more electropositive values of open circuit potential. This could be attributed to lower grain boundary area in heat-treated specimens as compared to 16 h cryogenically treated specimen as higher grain boundary areas behave as an anode in an electrochemical cell, thereby enhancing the rate of corrosion. According to electrochemical tests, the cryogenically treated surface is more resistant to corrosion, followed by heated alloy. However, both surface modification treatments improved the corrosion behavior of the untreated alloy.


Author(s):  
Arvind M Sankhla ◽  
Kaushik M Patel ◽  
Mayur A Makhesana ◽  
Kuldeep K Saxena ◽  
Nakul Gupta

2013 ◽  
Vol 690-693 ◽  
pp. 193-196
Author(s):  
Xiao Liu ◽  
Jing Long Liang

The effect of RE on modifying inclusions of H13 die steel was studied by metallographic examination, SEM and electron spectroscopy. Thermodynamic calculation was used to analyze the formation of RE inclusions in H13 die steel. The result shows that sulfide inclusions are modified to round RE complex inclusions after adding RE to H13 die steel.


Sign in / Sign up

Export Citation Format

Share Document