scholarly journals Effect of Deep Cryogenic Treatment on Corrosion Behavior of AISI H13 Die Steel

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7863
Author(s):  
Tarang Shinde ◽  
Catalin Pruncu ◽  
Narendra B. Dhokey ◽  
Anca C. Parau ◽  
Alina Vladescu

AISI H13 die steel specimens were subjected to heating at 1020 °C followed by oil quenching and double tempering at 520 °C. Subsequently, these specimens were subjected to deep cryogenic treatment at −185 °C in liquid nitrogen environment for 16 h and then subjected to soft tempering at 100 °C once the specimens attained room temperature. Thereafter, the specimens were subjected to scanning electron microscopy (SEM) analysis and electron backscatter diffraction (EBSD) analysis. The electrochemical corrosion activity was investigated in 3.5% NaCl at 23 ± 0.5 °C by evaluating the evolution of open circuit potential over time and potentiodynamic curves, and electrochemical impedance spectroscopy study was also carried out. The heat-treated specimens exhibited better resistance to corrosion through more electropositive values of open circuit potential. This could be attributed to lower grain boundary area in heat-treated specimens as compared to 16 h cryogenically treated specimen as higher grain boundary areas behave as an anode in an electrochemical cell, thereby enhancing the rate of corrosion. According to electrochemical tests, the cryogenically treated surface is more resistant to corrosion, followed by heated alloy. However, both surface modification treatments improved the corrosion behavior of the untreated alloy.

2011 ◽  
Vol 117-119 ◽  
pp. 81-84
Author(s):  
Xi Ran Wang ◽  
Jing Wu ◽  
Xin Gang Hu

In this work, Fe-Zn coating on copper is obtained by electroless plating. The surface mor -phologies and composition of the coatings has been investigated using scanning electronic microscope (SEM) and energy dispersive spectroscopy(EDS). Corrosion behavior of Fe-Zn coating in3.5% NaCl solution is gaved a further insight. The impedance diagram indicates that corrosion resistance of coating is better. The open circuit potential of Fe-Zn coating is at about -1V. Self-corrosion potential of Fe-Zn coating in 3.5%NaCl solution shifts in the positive direction first and then shifts from -0.622V to -0.603V with increasing heat-treated temperature, while corresponding self-corrosion current decreases at first and then. increases Corrosion resistance of coating is the best when heat-treated temperature is 300°C.


Author(s):  
Menderes Kam

This study investigated the effects of Deep Cryogenic Treatment (DCT) on machinability, hardness, and microstructure in dry turning process of AISI 4140 (48-51 HRc) tempered steels with ceramic cutting tools on the surface roughness (Ra). DCT process of steels has shown significant improvement in their mechanical properties. In this context, experiments were made with Taguchi L16 method and optimum values were determined. Three different values for each control factors as: different heat treated samples, cutting speeds (160, 200, 240, 280 m/min), feed rates (0.08, 0.12, 0.16, 0.20 mm/rev) were selected. As a result, the lowest Ra value was found to be 0.159 µm for the DCTT36 sample at a cutting speed of 240 m/min, a feed rate of 0.08 mm/rev. The optimum Ra value was the lowest for the DCTT36 sample compared to the other samples as 0.206 µm. The hardness values of the micro and macro were highest for the DCTT36 sample. Microstructural point of view Scanning Electron Microscopy (SEM) point of view, the DCCT36 sample showed that best results owing to its homogeneity. It was concluded that lower Ra values can be obtained with ceramic cutting tool in dry turning experiments according to the studies in the literature review. It is thought to be preferred as an alternative to cylindrical grinding process due to lower cost.


Author(s):  
S Kumar ◽  
R Singh ◽  
T P Singh ◽  
B L Sethi

The electrical discharge machining (EDM) process is extensively used in the tool and die making industry for accurate machining of internal profiles in hardened materials. Although it is essentially a material removal process, efforts have been made in the recent past to use it as surface treatment method. This article investigates and compares the effect of material transfer from electrode bodies (copper, copper—chromium, and copper—tungsten) and tungsten powder suspended in the dielectric medium during die-sinking EDM of AISI H13 die steel. Results show a 76 per cent increase in micro-hardness by machining with a copper—tungsten electrode and a 111 per cent increase by machining with tungsten powder mixed in the dielectric. The copper—chromium electrode gives the best surface roughness (Ra) value of 2.67 μ m. Scanning electron microscopy and X-ray diffraction analysis of the machined surfaces show alloying of parent material with tungsten and tungsten carbide. Chemical composition of the machined surfaces was further checked on an optical emission spectrometer to verify the results. Besides a significant presence of tungsten, an increase in the percentage of carbon is also observed.


CORROSION ◽  
10.5006/0709 ◽  
2013 ◽  
Vol 69 (6) ◽  
pp. 543-550 ◽  
Author(s):  
S. Jones ◽  
K. Coley ◽  
J. Kish

When exposed to concentrated sulfuric acid, stainless steel exhibits unique electrochemical behavior. This behavior can be observed as an oscillation in open-circuit potential between the active and passive states. The transient nature of the corrosion behavior under these conditions results in a distinct challenge for measuring and predicting corrosion rates. Using a series of commercial alloys with various nickel contents, this paper outlines the utilization of electrochemical experimentation to refine the prediction of corrosion rates. The paper also discusses some of the difficulties associated with many traditional electrochemical techniques such as potentiodynamic scans when used for characterizing systems that undergo oscillations in open-circuit potential.


2007 ◽  
Vol 28 (1) ◽  
pp. 272-277 ◽  
Author(s):  
Hong Yan ◽  
J. Hua ◽  
R. Shivpuri

Author(s):  
Idayan A ◽  
C. Elanchezhian ◽  
B. Vijaya Ramnath ◽  
Palanikumar K

In this research work, two types of cryogenic treatment such as deep cryogenic treatment (-196oC) and shallow cryogenic treatment (-80oC) have been adopted for wear resistance to increase in AISI 440C bearing steel. This paper has been focused to increase Wear Resistance (WR) through deep micro structural analyses, and also attention has been made to correlate the microstructure with the wear character of Deep Cryogenic treated (DCT) specimens, Conventional Heat Treated (CHT) specimens and Shallow Cryogenic Treated (SCT) specimens. Micro structural examinations have been carried out in the specimens through Scanning Electron Microscopy (SEM), Energy Dispersive Analysis of X-ray (EDAX) and X-Ray Diffraction (XRD). Wear characteristics of AISI 440C bearing steel has been studied. The outcome of the research disclosed that the DCT specimens have higher wear resistance than SCT and CHT specimens. The effective wear mechanisms recognized were the constitution of white layers and delamination of white layers. The microstructures of the materials have been varied through heat treatment process. The modification of Secondary Carbides (SCs) precipitation characteristics and its reduction of retained austenite in the microstructure have been correlated with wear character and these are the liable mechanism to raise the wear resistance of bearing steels through DCT.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 169 ◽  
Author(s):  
Jia-Ning Xu ◽  
Wen-Ge Shi ◽  
Peng-Cheng Ma ◽  
Liang-Shan Lu ◽  
Gui-Min Chen ◽  
...  

In this paper, the galvanic effect of pyrite and arsenopyrite during the leaching pretreatment of gold ores was determined with the use of electrochemical testing (open circuit potential, linear sweep voltammetry, Tafel, and electrochemical impedance spectroscopy (EIS)) and frontier orbit calculations. The results show that (i) the linear sweep voltammetry curve and Tafel curve of the galvanic pair are similar to those of arsenopyrite, (ii) the corrosion behavior of the galvanic pair is consistent with that of arsenopyrite, and (iii) the galvanic effect promotes the corrosion of arsenopyrite by simultaneously increasing the cathode and anode currents and reducing oxidation resistance. The frontier orbit calculation explains the principle of the galvanic effect of pyrite and arsenopyrite from the view of quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document