Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options

2017 ◽  
Vol 40 (5) ◽  
pp. 419-441 ◽  
Author(s):  
Meysam Yousefi ◽  
Tayyeb Bahrami ◽  
Arash Salmaninejad ◽  
Rahim Nosrati ◽  
Parisa Ghaffari ◽  
...  
2019 ◽  
Vol 5 (suppl) ◽  
pp. 41-41
Author(s):  
ChunXia Su ◽  
Juan Zhou ◽  
Xiangling Chu ◽  
Jing Zhao

41 Background: Lung cancer is the most common cause of mortality in both men and women, accounting for one-quarter of all cancer deaths. Most lung cancer-associated deaths result from metastasis, especially brain metastasis. Metastasis associated mutations are important biomarkers for metastasis prediction and outcome improvement. The current study aimed to reveal the molecular mechanisms and the genetic alterations involved in metastasis from lung tumors to the brain. Methods: We carried out whole exome sequencing (WES) of the primary tumors and the corresponding brain metastases from 15 patients with metastatic non-small-cell lung carcinoma. Results: We identified novel lung cancer metastases associated genes (CHEK2P2, BAGE2, AHNAK2) and epigenetic factors (miR-4436A, miR-6077). Lung-brain metastasis samples have more similar Ti/Tv(transition/transversion) profile with brain cancer. Focal adhesion, PI3K-Akt signaling pathway, MAPK signaling pathway are some of the most important tumor onset and metastasis pathways. Alternative splicing, Methylation and EGF-like domain are important metabolic abnormal for the lung-metastasis cancers. Conclusions: We conducted a pairwise lung-brain metastasis based WES and identified some novel metastasis related mutations which provided potential biomarkers for prognosis and targeted therapeutics.


1990 ◽  
Vol 76 (6) ◽  
pp. 579-581 ◽  
Author(s):  
Adriano Rizzi ◽  
Maurizio Tondini ◽  
Gaetano Rocco ◽  
Gerolamo Rossi ◽  
Mario Robustellini ◽  
...  

2020 ◽  
Author(s):  
Neal Shah ◽  
Zhongwei Liu ◽  
Rachel M. Tallman ◽  
Afroz Mohammad ◽  
Samuel A Sprowls ◽  
...  

Abstract Background Cancer metastasis and drug resistance have traditionally been studied separately, though these two lethal pathological phenomena almost always occur concurrently. Brain metastasis occurs in a large proportion of lung cancer patients (~30%). Once diagnosed, patients have a poor prognosis surviving typically less than 1 year due to lack of treatment efficacy. Methods Human metastatic lung cancer cells (PC-9-Br) were injected into the left cardiac ventricle of female athymic nude mice. Brain lesions were allowed to grow for 21 days, animals were then randomized into treatment groups and treated until presentation of neurological symptoms or when moribund. Prior to tissue collection mice were injected with Oregon Green and 14C-Aminoisobutyric acid followed by an indocyanine green vascular washout. Tracer accumulation was determined by quantitative fluorescent microscopy and quantitative autoradiography. Survival was tracked and tumor burden was monitored via bioluminescent imaging. Extent of mutation differences and acquired resistance was measured in-vitro through half-maximal inhibitory assays and qRT-PCR analysis. Results A PC-9 brain seeking line (PC-9-Br) was established. Mice inoculated with PC-9-Br resulted in a significantly decreased survival time compared with mice inoculated with parental PC-9. Non-targeted chemotherapy with cisplatin and etoposide (51.5 days) significantly prolonged survival of PC-9-Br brain metastases in mice compared to vehicle control (42 days) or cisplatin and pemetrexed (45 days). Further in-vivo imaging showed greater tumor vasculature in mice treated with cisplatin and etoposide compared to non-tumor regions, which was not observed in mice treated with vehicle or cisplatin and pemetrexed. More importantly, PC-9-Br showed significant resistance to gefitinib by in-vitro MTT assays (IC50>2.5 µM at 48hrs and 0.1 µM at 72hrs) compared with parental PC-9 (IC50: 0.75 µM at 48hrs and 0.027 µM at 72hrs). Further studies on the molecular mechanisms of gefitinib resistance revealed that EGFR and phospho-EGFR were significantly decreased in PC-9-Br compared with PC-9. Expression of E-cadherin and vimentin did not show EMT in PC-9-Br compared with parental PC-9, and PC-9-Br had neither T790 mutation nor amplifications of MET and HER2 compared with parental PC-9. Conclusion Our study demonstrated that brain metastases of lung cancer cells may independently prompt drug resistance without drug treatment.


2020 ◽  
Author(s):  
Neal Shah ◽  
Zhongwei Liu ◽  
Rachel M. Tallman ◽  
Afroz Mohammad ◽  
Samuel A Sprowls ◽  
...  

Abstract Background Cancer metastasis and drug resistance have traditionally been studied separately, though these two lethal pathological phenomena almost always occur concurrently. Brain metastasis occurs in a large proportion of lung cancer patients (~30%). Once diagnosed, patients have a poor prognosis surviving typically less than 1 year due to lack of treatment efficacy. Methods Human metastatic lung cancer cells (PC-9-Br) were injected into the left cardiac ventricle of female athymic nude mice. Brain lesions were allowed to grow for 21 days, animals were then randomized into treatment groups and treated until presentation of neurological symptoms or when moribund. Prior to tissue collection mice were injected with Oregon Green and 14C-Aminoisobutyric acid followed by an indocyanine green vascular washout. Tracer accumulation was determined by quantitative fluorescent microscopy and quantitative autoradiography. Survival was tracked and tumor burden was monitored via bioluminescent imaging. Extent of mutation differences and acquired resistance was measured in-vitro through half-maximal inhibitory assays and qRT-PCR analysis. Results A PC-9 brain seeking line (PC-9-Br) was established. Mice inoculated with PC-9-Br resulted in a significantly decreased survival time compared with mice inoculated with parental PC-9. Non-targeted chemotherapy with cisplatin and etoposide (51.5 days) significantly prolonged survival of PC-9-Br brain metastases in mice compared to vehicle control (42 days) or cisplatin and pemetrexed (45 days). Further in-vivo imaging showed greater tumor vasculature in mice treated with cisplatin and etoposide compared to non-tumor regions, which was not observed in mice treated with vehicle or cisplatin and pemetrexed. More importantly, PC-9-Br showed significant resistance to gefitinib by in-vitro MTT assays (IC50>2.5 µM at 48hrs and 0.1 µM at 72hrs) compared with parental PC-9 (IC50: 0.75 µM at 48hrs and 0.027 µM at 72hrs). Further studies on the molecular mechanisms of gefitinib resistance revealed that EGFR and phospho-EGFR were significantly decreased in PC-9-Br compared with PC-9. Expression of E-cadherin and vimentin did not show EMT in PC-9-Br compared with parental PC-9, and PC-9-Br had neither T790 mutation nor amplifications of MET and HER2 compared with parental PC-9. Conclusion Our study demonstrated that brain metastases of lung cancer cells may independently prompt drug resistance without drug treatment.


2019 ◽  
Author(s):  
Neal Shah ◽  
Zhongwei Liu ◽  
Rachel M. Tallman ◽  
Afroz Mohammad ◽  
Samuel A Sprowls ◽  
...  

Abstract Background Cancer metastasis and drug resistance have traditionally been studied separately, though these two lethal pathological phenomena almost always occur concurrently. Brain metastasis occurs in a large proportion of lung cancer patients (~30%). Once diagnosed, patients have a poor prognosis surviving typically less than 1 year due to lack of treatment efficacy. Methods Human metastatic lung cancer cells (PC-9-Br) were injected into the left cardiac ventricle of female athymic nude mice. Brain lesions were allowed to grow for 21 days, animals were then randomized into treatment groups and treated until presentation of neurological symptoms or when moribund. Prior to tissue collection mice were injected with Oregon Green and 14C-Aminoisobutyric acid followed by an indocyanine green vascular washout. Tracer accumulation was determined by quantitative fluorescent microscopy and quantitative autoradiography. Survival was tracked and tumor burden was monitored via bioluminescent imaging. Extent of mutation differences and acquired resistance was measured in-vitro through half-maximal inhibitory assays and qRT-PCR analysis. Results A PC-9 brain seeking line (PC-9-Br) was established. Mice inoculated with PC-9-Br resulted in a significantly decreased survival time compared with mice inoculated with parental PC-9. Non-targeted chemotherapy with cisplatin and etoposide (51.5 days) significantly prolonged survival of PC-9-Br brain metastases in mice compared to vehicle control (42 days) or cisplatin and pemetrexed (45 days). Further in-vivo imaging showed greater tumor vasculature in mice treated with cisplatin and etoposide compared to non-tumor regions, which was not observed in mice treated with vehicle or cisplatin and pemetrexed. More importantly, PC-9-Br showed significant resistance to gefitinib by in-vitro MTT assays (IC50>2.5 µM at 48hrs and 0.1 µM at 72hrs) compared with parental PC-9 (IC50: 0.75 µM at 48hrs and 0.027 µM at 72hrs). Further studies on the molecular mechanisms of gefitinib resistance revealed that EGFR and phospho-EGFR were significantly decreased in PC-9-Br compared with PC-9. Expression of E-cadherin and vimentin did not show EMT in PC-9-Br compared with parental PC-9, and PC-9-Br had neither T790 mutation nor amplifications of MET and HER2 compared with parental PC-9. Conclusion Our study demonstrated that brain metastases of lung cancer cells may independently prompt drug resistance without drug treatment.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1590
Author(s):  
Kenichi Suda ◽  
Tetsuya Mitsudomi

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) serve as the standard of care for the first-line treatment of patients with lung cancers with EGFR-activating mutations. However, the acquisition of resistance to EGFR TKIs is almost inevitable, with extremely rare exceptions, and drug-tolerant cells (DTCs) that demonstrate reversible drug insensitivity and that survive the early phase of TKI exposure are hypothesized to be an important source of cancer cells that eventually acquire irreversible resistance. Numerous studies on the molecular mechanisms of drug tolerance of EGFR-mutated lung cancers employ lung cancer cell lines as models. Here, we reviewed these studies to generally describe the features, potential origins, and candidate molecular mechanisms of DTCs. The rapid development of an optimal treatment for EGFR-mutated lung cancer will require a better understanding of the underlying molecular mechanisms of the drug insensitivity of DTCs.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1966
Author(s):  
Cheng-Hao Chuang ◽  
Hsiao-Ling Chen ◽  
Hsiu-Mei Chang ◽  
Yu-Chen Tsai ◽  
Kuan-Li Wu ◽  
...  

Several anaplastic lymphoma kinase inhibitors (ALKIs) have demonstrated excellent efficacy on overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and also better adverse effect (AE) profiles compared to cytotoxic chemotherapy in advanced stage anaplastic lymphoma kinase (ALK) rearrangement-positive non-small cell lung cancer (NSCLC) in phase III randomized clinical trials (RCTs). We conducted this systematic review and network meta-analysis to provide a ranking of ALKIs for treatment-naïve ALK-positive patients in terms of PFS, ORR, and AEs. In addition, a sub-group analysis of treatment benefits in patients with baseline brain metastasis was also conducted. Contrast-based analysis was performed for multiple treatment comparisons with the restricted maximum likelihood approach. Treatment rank was estimated using the surface under the cumulative ranking curve (SUCRA), as well as the probability of being the best (Prbest) reference. All next-generation ALKIs were superior to crizotinib in PFS but lorlatinib and brigatinib had increased AEs. The probability of lorlatinib being ranked first among all treatment arms was highest (SUCRA = 93.3%, Prbest = 71.8%), although there were no significant differences in pairwise comparisons with high- (600 mg twice daily) and low- (300 mg twice daily) dose alectinib. In subgroup analysis of patients with baseline brain metastasis, low-dose alectinib had the best PFS (SUCRA = 87.3%, Prbest = 74.9%). Lorlatinib was associated with the best ranking for ORR (SUCRA = 90.3%, Prbest = 71.3%), although there were no significant differences in pairwise comparisons with the other ALKIs. In addition, low-dose alectinib had the best safety performance (SUCRA = 99.4%, Prbest = 97.9%). Lorlatinib and low-dose alectinib had the best PFS and ORR in the overall population and baseline brain metastasis subgroup, respectively. Low-dose alectinib had the lowest AE risk among the available ALKIs. Further head-to-head large-scale phase III RCTs are needed to verify our conclusions.


2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


Sign in / Sign up

Export Citation Format

Share Document