Genome-wide identification and abiotic stress responses of DGK gene family in maize

Author(s):  
Yingnan Gu ◽  
Changjiang Zhao ◽  
Lin He ◽  
Bowei Yan ◽  
Jiejing Dong ◽  
...  
2020 ◽  
Author(s):  
Yue Liu ◽  
Nannan Liu ◽  
Xiong Deng ◽  
Dongmiao Liu ◽  
Mengfei Li ◽  
...  

Abstract Background: DNA binding with one finger (Dof) transcription factors play important roles in plant growth and abiotic stress responses. Although genome-wide identification and analysis of the DOF transcription factor family has been reported in other species, no relevant studies have emerged in wheat. The aim of this study was to investigate the evolutionary and functional characteristics associated with plant growth and abiotic stress responses by genome-wide analysis of the wheat Dof transcription factor gene family. Results: Using the recently released wheat genome database (IWGSC RefSeq v1.1), we identified 96 wheat Dof gene family members, which were phylogenetically clustered into five distinct subfamilies. Gene duplication analysis revealed a broad and heterogeneous distribution of TaDofs on the chromosome groups 1 to 7, and obvious tandem duplication genes were present on chromosomes 2 and 3.Members of the same gene subfamily had similar exon-intron structures, while members of different subfamilies had obvious differences. Functional divergence analysis indicated that type-II functional divergence played a major role in the differentiation of the TaDof gene family. Positive selection analysis revealed that the Dof gene family experienced different degrees of positive selection pressure during the process of evolution, and five significant positive selection sites (30A, 31T, 33A, 102G and 104S) were identified. Additionally, nine groups of coevolving amino acid sites, which may play a key role in maintaining the structural and functional stability of Dof proteins, were identified. The results from the RNA-seq data and qRT-PCR analysis revealed that TaDof genes exhibited obvious expression preference or specificity in different organs and developmental stages, as well as in diverse abiotic stress responses. Most TaDof genes were significantly upregulated by heat, PEG and heavy metal stresses. Conclusions: The genome-wide analysis and identification of wheat DOF transcription factor family and the discovery of important amino acid sites are expected to provide new insights into the structure, evolution and function of the plant Dof gene family.


2021 ◽  
Vol 22 (3) ◽  
pp. 1387
Author(s):  
Qi Wang ◽  
Xin Xu ◽  
Xiaoyu Cao ◽  
Tixu Hu ◽  
Dongnan Xia ◽  
...  

Triacylglycerol Lipases (TGLs) are the major enzymes involved in triacylglycerol catabolism. TGLs hydrolyze long-chain fatty acid triglycerides, which are involved in plant development and abiotic stress responses. Whereas most studies of TGLs have focused on seed oil metabolism and biofuel in plants, limited information is available regarding the genome-wide identification and characterization of the TGL gene family in tomato (Solanum lycopersicum L.). Based on the latest published tomato genome annotation ITAG4.0, 129 SlTGL genes were identified and classified into 5 categories according to their structural characteristics. Most SlTGL genes were distributed on 3 of 12 chromosomes. Segment duplication appeared to be the driving force underlying expansion of the TGL gene family in tomato. The promoter analysis revealed that the promoters of SlTGLs contained many stress responsiveness cis-elements, such as ARE, LTR, MBS, WRE3, and WUN-motifs. Expression of the majority of SlTGL genes was suppressed following exposure to chilling and heat, while it was induced under drought stress, such as SlTGLa9, SlTGLa6, SlTGLa25, SlTGLa26, and SlTGLa13. These results provide valuable insights into the roles of the SlTGL genes family and lay a foundation for further functional studies on the linkage between triacylglycerol catabolism and abiotic stress responses in tomato.


2020 ◽  
Author(s):  
Neeta Lohani ◽  
Saeid Babaei ◽  
Mohan B. Singh ◽  
Prem L. Bhalla

AbstractDOF, DNA binding with one finger proteins are plant-specific transcription factors shown to play roles in diverse plant functions. However, a—little is known about DOF protein repertoire of the allopolyploid crop, Brassica napus. Here, we report genome-wide identification and systematic analysis of the Dof transcription factor family in this important oilseed crop. We identified 117 Brassica napus Dof genes (BnaDofs). So far, this is the largest number of Dof genes reported in a single eudicot species. Based on phylogenetic analysis, BnaDofs were classified into nine groups (A, B1, B2. C1, C2.1, C2.2, C3, D1, D2). Most members belonging to a particular group displayed conserved gene structural organisation and similar protein motifs distribution. Chromosomal localisation analysis highlighted the uneven distribution of BnaDofs across all chromosomes. Evolutionary analysis exemplified that the divergence of Brassica genus from Arabidopsis, the whole genome triplication event, and the hybridisation of B. oleracea and B. rapa to form B. napus, followed by gene loss and rearrangements, led to the expansion and divergence of Dof TF gene family in B. napus. Functional annotation of BnaDof proteins, cis-element analysis of their promoters suggested potential roles in organ development, the transition from vegetative to the reproductive stage, light responsiveness, phytohormone responsiveness as well as abiotic stress responses. Furthermore, the transcriptomic analysis highlighted the preferential tissue-specific expression patters of BnaDofs and their role in response to various abiotic stress. Overall, this study provides a comprehensive understanding of the molecular structure, evolution, and potential functional roles of Dof genes in plant development and abiotic stress response.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shutao He ◽  
Xiaomeng Hao ◽  
Shuli He ◽  
Xiaoge Hao ◽  
Xiaonan Chen

Abstract Background In recent years, much attention has been given to AP2/ERF transcription factors because they play indispensable roles in many biological processes, such as plant development and biotic and abiotic stress responses. Although AP2/ERFs have been thoroughly characterised in many plant species, the knowledge about this family in the sweet potato, which is a vital edible and medicinal crop, is still limited. In this study, a comprehensive genome-wide investigation was conducted to characterise the AP2/ERF gene family in the sweet potato. Results Here, 198 IbAP2/ERF transcription factors were obtained. Phylogenetic analysis classified the members of the IbAP2/ERF family into three groups, namely, ERF (172 members), AP2 (21 members) and RAV (5 members), which was consistent with the analysis of gene structure and conserved protein domains. The evolutionary characteristics of these IbAP2/ERF genes were systematically investigated by analysing chromosome location, conserved protein motifs and gene duplication events, indicating that the expansion of the IbAP2/ERF gene family may have been caused by tandem duplication. Furthermore, the analysis of cis-acting elements in IbAP2/ERF gene promoters implied that these genes may play crucial roles in plant growth, development and stress responses. Additionally, the available RNA-seq data and quantitative real-time PCR (qRT-PCR) were used to investigate the expression patterns of IbAP2/ERF genes during sweet potato root development as well as under multiple forms of abiotic stress, and we identified several developmental stage-specific and stress-responsive IbAP2/ERF genes. Furthermore, g59127 was differentially expressed under various stress conditions and was identified as a nuclear protein, which was in line with predicted subcellular localization results. Conclusions This study originally revealed the characteristics of the IbAP2/ERF superfamily and provides valuable resources for further evolutionary and functional investigations of IbAP2/ERF genes in the sweet potato.


2019 ◽  
Author(s):  
Yue Liu ◽  
Nannan Liu ◽  
Xiong Deng ◽  
Dongmiao Liu ◽  
Mengfei Li ◽  
...  

Abstract Background DNA binding with one finger (Dof) transcription factors play important roles in plant growth and abiotic stress responses. Although genome-wide identification and analysis of the DOF transcription factor family has been reported in other species, no relevant studies have emerged in wheat. The aim of this study was to investigate the evolutionary and functional characteristics associated with plant growth and abiotic stress responses by genome-wide analysis of the wheat Dof transcription factor gene family. Results Using the recently released wheat genome database (IWGSC RefSeq v1.1), we identified 96 wheat Dof gene family members, which were phylogenetically clustered into five distinct subfamilies. Members of the same gene subfamily had similar exon-intron structures, while members of different subfamilies had obvious differences. Functional divergence analysis indicated that type-II functional divergence played a major role in the differentiation of the TaDof gene family. Positive selection analysis revealed that the Dof gene family experienced different degrees of positive selection pressure during the process of evolution, and five significant positive selection sites (30A, 31T, 33A, 102G and 104S) were identified. Additionally, nine groups of coevolving amino acid sites, which may play a key role in maintaining the structural and functional stability of Dof proteins, were identified. The results from the RNA-seq data and RT-qPCR analysis revealed that TaDof genes exhibited obvious expression preference or specificity in different organs and developmental stages, as well as in diverse abiotic stress responses. Most TaDof genes were significantly upregulated by heat, PEG and heavy metal stresses. Conclusions The genome-wide analysis and identification of wheat DOF transcription factor family and the discovery of important amino acid sites are expected to provide new insights into the structure, evolution and function of the plant Dof gene family.


2021 ◽  
Vol 49 (3) ◽  
pp. 12489
Author(s):  
Sun FAN ◽  
Naveed AHMAD ◽  
Jin LIBO ◽  
Zhang XINYUE ◽  
Ma XINTONG ◽  
...  

Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) is mainly associated with monolignol biosynthesis, a central precursor to producing guaiacyl and syringyl lignins in plants. However, the explicit regulatory mechanism of HCT-mediated monolignol biosynthesis in plants still remained unclear. Here, the genome-wide analysis of the HCT gene family in Carthamus tinctorius as a target for understanding growth, development, and stress-responsive mechanisms was investigated. A total of 82 CtHCT genes were identified and characterized. Most of the CtHCTs proteins demonstrated the presence of two common conserved domains, including HXXXD and DFGWG. In addition, the conserved structure of protein motifs, PPI network, cis-regulatory units, and gene structure analysis demonstrated several genetic determinants reflecting the wide range of functional diversity of CtHCT-encoding genes. The observed expression analysis of CtHCT genes in different flowering stages under normal conditions partially highlighted their putative roles in plant growth and development pathways. Moreover, CtHCT genes appeared to be associated with abiotic stress responses as validated by the expression profiling in various flowering phases under light irradiation and MeJA treatment. Altogether, these findings provide new insights into identifying crucial molecular targets associated with plant growth and development and present practical information for understanding abiotic stress-responsive mechanisms in plants.


2020 ◽  
Author(s):  
Yue Liu ◽  
Nannan Liu ◽  
Xiong Deng ◽  
Dongmiao Liu ◽  
Mengfei Li ◽  
...  

Abstract Background: DNA binding with one finger (Dof) transcription factors play important roles in plant growth and abiotic stress responses. Although genome-wide identification and analysis of the DOF transcription factor family has been reported in other species, no relevant studies have emerged in wheat. The aim of this study was to investigate the evolutionary and functional characteristics associated with plant growth and abiotic stress responses by genome-wide analysis of the wheat Dof transcription factor gene family. Using the recently released wheat genome database (Results: Using the recently released wheat genome database (IWGSC RefSeq v1.1), we identified 96 wheat Dof gene family members, which were phylogenetically clustered into five distinct subfamilies. Gene duplication analysis revealed a broad and heterogeneous distribution of TaDofs on the chromosome groups 1 to 7, and obvious tandem duplication genes were present on chromosomes 2 and 3.Members of the same gene subfamily had similar exon-intron structures, while members of different subfamilies had obvious differences. Functional divergence analysis indicated that type-II functional divergence played a major role in the differentiation of the TaDof gene family. Positive selection analysis revealed that the Dof gene family experienced different degrees of positive selection pressure during the process of evolution, and five significant positive selection sites (30A, 31T, 33A, 102G and 104S) were identified. Additionally, nine groups of coevolving amino acid sites, which may play a key role in maintaining the structural and functional stability of Dof proteins, were identified. The results from the RNA-seq data and qRT-PCR analysis revealed that TaDof genes exhibited obvious expression preference or specificity in different organs and developmental stages, as well as in diverse abiotic stress responses. Most TaDof genes were significantly upregulated by heat, PEG and heavy metal stresses. Conclusions: The genome-wide analysis and identification of wheat DOF transcription factor family and the discovery of important amino acid sites are expected to provide new insights into the structure, evolution and function of the plant Dof gene family.


Sign in / Sign up

Export Citation Format

Share Document