Recycling of induction furnace steel slag in concrete for marine environmental applications towards ocean acidification studies

Author(s):  
J. Baalamurugan ◽  
V. Ganesh Kumar ◽  
B. S. N. Naveen Prasad ◽  
R. Padmapriya ◽  
V. Karthick ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6268
Author(s):  
Md Jihad Miah ◽  
Md. Kawsar Ali ◽  
Ye Li ◽  
Adewumi John Babafemi ◽  
Suvash Chandra Paul

This research investigates the flexural and durability performances of reinforced concrete (RC) beams made with induction furnace steel slag aggregate (IFSSA) as a replacement for fired clay brick aggregate (FCBA). To achieve this, 27 RC beams (length: 750 mm, width: 125 mm, height: 200 mm) were made with FCBA replaced by IFSSA at nine replacement levels of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100% (by volume). Flexural tests of RC beams were conducted by a four-point loading test, where the deflection behavior of the beams was monitored through three linear variable displacement transducers (LVDT). The compressive strength and durability properties (i.e., porosity, resistance to chloride ion penetration, and capillary water absorption) were assessed using the same batch of concrete mix used to cast RC beams. The experimental results have shown that the flexural load of RC beams made with IFSSA was significantly higher than the control beam (100% FCBA). The increment of the flexural load was proportional to the content of IFSSA, with an increase of 27% for the beam made with 80% IFSSA than the control beam. The compressive strength of concrete increased by 56% and 61% for the concrete made with 80% and 100% IFSSA, respectively, than the control concrete, which is in good agreement with the flexural load of RC beams. Furthermore, the porosity, resistance to chloride ion penetration, and capillary water absorption were inversely proportional to the increase in the content of IFSSA. For instance, porosity, chloride penetration, and water absorption decreased by 43%, 54%, and 68%, respectively, when IFSSA entirely replaced FCBA. This decreasing percentage of durability properties is in agreement with the flexural load of RC beams. A good linear relationship of porosity with chloride penetration resistance and capillary water absorption was observed.


2019 ◽  
Vol 369 ◽  
pp. 561-568 ◽  
Author(s):  
J. Baalamurugan ◽  
V. Ganesh Kumar ◽  
S. Chandrasekaran ◽  
S. Balasundar ◽  
B. Venkatraman ◽  
...  

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
J. Baalamurugan ◽  
V. Ganesh Kumar ◽  
T. Stalin Dhas ◽  
S. Taran ◽  
S. Nalini ◽  
...  

AbstractMetals and metal oxide-based nanocomposites play a significant role over the control of microbes. In this study, antibacterial activity of iron oxide (Fe2O3) nanocomposites based on induction furnace (IF) steel slag has been carried out. IF steel slag is an industrial by-product generated from secondary steel manufacturing process and has various metal oxides which includes Al2O3 (7.89%), MnO (5.06), CaO (1.49%) and specifically Fe2O3 (14.30%) in higher content along with metalloid SiO2 (66.42). Antibacterial activity of iron oxide nanocomposites has been revealed on bacterial species such as Micrococcus luteus, Bacillus subtilis and Staphylococcus aureus. Micrococcus luteus has undergone maximum zone of inhibition (ZOI) of 12 mm for 10 mg/mL concentration of steel slag iron oxide nanocomposite. Growth inhibitory kinetics of bacterial species has been studied using ELISA microplate reader at 660 nm by varying the concentration of steel slag iron oxide nanocomposites. The results illustrate that IF steel slag is a potential material and can be utilized in building materials to increase the resistance against biodeterioration. Graphic abstract


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2865
Author(s):  
Md Jihad Miah ◽  
Md. Munir Hossain Patoary ◽  
Suvash Chandra Paul ◽  
Adewumi John Babafemi ◽  
Biranchi Panda

This paper investigates the possibility of utilizing steel slags produced in the steelmaking industry as an alternative to burnt clay brick aggregate (BA) in concrete. Within this context, physical, mechanical (i.e., compressive and splitting tensile strength), length change, and durability (porosity) tests were conducted on concrete made with nine different percentage replacements (0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100% by volume of BA) of BA by induction of furnace steel slag aggregate (SSA). In addition, the chemical composition of aggregate through X-ray fluorescence (XRF) analysis and microstructural analysis through scanning electron microscopy (SEM) of aggregates and concrete were performed. The experimental results show that the physical and mechanical properties of concrete made with SSA were significantly higher than that of concrete made with BA. The compressive and tensile strength increased by 73% when SSA fully replaced BA. The expansion of concrete made with SSA was a bit higher than the concrete made with BA. Furthermore, a significant lower porosity was observed for concrete made with SSA than BA, which decreased by 40% for 100% SSA concrete than 100% BA concrete. The relation between compressive and tensile strength with the porosity of concrete mixes are in agreement with the relationships presented in the literature. This study demonstrates that SSA can be used as a full replacement of BA, which is economical, conserves the natural aggregate, and is sustainable building material since burning brick produces a lot of CO2.


Sign in / Sign up

Export Citation Format

Share Document