Large-area epitaxial CdTe(100) films grown on GaAs(100) substrates: MBE growth and substrate temperature effect

Author(s):  
Younghun Hwang ◽  
Van Quang Ngugen ◽  
Jin San Choi ◽  
Sujung Park ◽  
Shinuk Cho ◽  
...  
1996 ◽  
Vol 441 ◽  
Author(s):  
W. K. Liu ◽  
X. M. Fang ◽  
P. J. McCann ◽  
M. B. Santos

AbstractRHEED intensity oscillations observed during MBE growth of CaF2 on Si(111) and PbSe on CaF2/Si(111) are presented. The effects of substrate temperature and initial nucleation procedure are investigated. Strong temporal oscillations of the specular beam intensity are found to be most readily observed at temperatures below 200°C for both CaF2 and PbSe. Growth rates measured as a function of cell temperatures exhibit Arrhenius behavior with activation energies of 5.0 eV and 1.93 eV for CaF2 and PbSe, respectively. The relatively high activation energy obtained for CaF2 is consistent with the high melting point and sublimation energy of ionic fluorides.


2009 ◽  
Vol 1183 ◽  
Author(s):  
Yôtarõ Nishio ◽  
Kôichirô Ishikawa ◽  
Shinji Kuroda ◽  
Masanori Mitome ◽  
Yoshio Bando

AbstractThe correlation between the Cr aggregation and magnetic properties are investigated for the series of Zn1-xCrxTe films grown by MBE with a systematic variation of growth conditions. Structural and chemical analyses using TEM and energy-dispersive X-ray spectroscopy (EDS) reveal that the crystallinity and the Cr distribution change significantly with the substrate temperature during the MBE growth. For a relatively low average Cr content x ≅ 0.05, it is found that the crystal quality is improved with the increase of the substrate temperature. For a higher average Cr content x ≅ 0.2, the shape of Cr-rich regions is transformed from isolated clusters into one-dimensional nanocolumns with the increase of the substrate temperature. The direction of the nanocolumn formation changes depending on the crystallographic orientation of the grown films. In the magnetization measurements, anisotropic magnetic properties are observed in the films in which Cr-rich nanocolumns are formed in the vertical direction, depending on the relation between the direction of the nanocolumns and the applied magnetic fields.


2008 ◽  
Vol 41 (5) ◽  
pp. 055302 ◽  
Author(s):  
Quan-Bao Ma ◽  
Zhi-Zhen Ye ◽  
Hai-Ping He ◽  
Li-Ping Zhu ◽  
Wei-Chang Liu ◽  
...  

1995 ◽  
Vol 78 (1) ◽  
pp. 317-320 ◽  
Author(s):  
J. P. Kleider ◽  
C. Longeaud ◽  
M. Barranco‐Diaz ◽  
P. Morin ◽  
P. Roca i Cabarrocas

2003 ◽  
Vol 10 (04) ◽  
pp. 669-675
Author(s):  
F. S. Gard ◽  
J. D. Riley ◽  
R. Leckey ◽  
B. F. Usher

ZnSe epilayers have been grown under various Se/Zn atomic flux ratios in the range of 0.22–2.45 at a substrate temperature of 350°C on Zn pre-exposed GaAs (111) A surfaces. Real time reflection high energy electron diffraction (RHEED) observations have shown a transition from a two-dimensional (2D) to a three-dimensional (3D) growth mode. The transition time depends directly upon the growth rate. A detailed discussion is presented to explore the cause of this change in the growth mode.


1990 ◽  
Vol 5 (10) ◽  
pp. 849-855
Author(s):  
K. Tohma ◽  
R. Sugita ◽  
K. Honda ◽  
R. Akutagawa ◽  
Y. Kawawake ◽  
...  

2011 ◽  
Vol 1282 ◽  
Author(s):  
Michael Liehr ◽  
František Fendrych ◽  
Andrew Taylor ◽  
Miloš Nesládek

ABSTRACTCurrent experimental configurations for MW PECVD diamond growth do not allow simple up-scaling towards large areas, which is essential for microelectronic industries and other applications. Another important issue is the reduction of the substrate temperature during diamond growth to enhance the compatibility with wafer processing technologies. Such advantages are provided by MW-linear antenna (LA) plasma applicators, allowing a scalable concept for diamond growing plasmas. In the present work we introduce a novel construction of LA MW applicators designed for nanodiamond growth by using plasmas ranging from continuous wave (CW) to high repetition rates pulsed modes (up to 20 kHz) which advantages are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document