scholarly journals Effect of starting materials and sintering temperature on microstructure and optical properties of Y2O3:Yb3+ 5 at% transparent ceramics

Author(s):  
R. P. Yavetskiy ◽  
A. E. Balabanov ◽  
S. V. Parkhomenko ◽  
O. S. Kryzhanovska ◽  
A. G. Doroshenko ◽  
...  

Abstract Y2O3:Yb3+ 5 at% ceramics have been synthesized by the reactive sintering method using different commercial yttria powders (Alfa-Micro, Alfa-Nano, and ITO-V) as raw materials. It has been shown that all Y2O3 starting powders consist from agglomerates up to 5–7 µm in size which are formed from 25–60 nm primary particles. High-energy ball milling allows to significantly decreasing the median particle size D50 below 500 nm regardless of the commercial powders used. Sintering experiments indicate that powder mixtures fabricated from Alfa-Nano yttria powders have the highest sintering activity, while (Y0.86La0.09Yb0.05)2O3 ceramics sintered at 1750 °C for 10 h are characterized by the highest transmittance of about 45%. Y2O3:Yb3+ ceramics have been obtained by the reactive sintering at 1750–1825°C using Alfa-Nano Y2O3 powders and La2O3+ZrO2 as a complex sintering aid. The effects of the sintering temperature on densification processes, microstructure, and optical properties of Y2O3:Yb3+ 5 at% ceramics have been studied. It has been shown that Zr4+ ions decrease the grain growth of Y2O3:Yb3+ ceramics for sintering temperatures 1750–1775 °C. Further increasing the sintering temperature was accompanied by a sharp increase of the average grain size of ceramics referred to changes of structure and chemical composition of grain boundaries, as well as their mobility. It has been determined that the optimal sintering temperature to produce high-dense yttria ceramics with transmittance of 79%–83% and average grain size of 8 µm is 1800 °C. Finally, laser emission at ∼1030.7 nm with a slope efficiency of 10% was obtained with the most transparent Y2O3:Yb3+ 5 at% ceramics sintered.

2012 ◽  
Vol 268-270 ◽  
pp. 340-343
Author(s):  
Chong Cai Zhang ◽  
Quan Wang

In this paper, the WC-16TiC-xTaC-9Co and Co are mixed together preparing for WC, (W, Ti, Ta) C. By high-energy ball milling, the powder is cold isostatic pressed and vacuum sintered by 1410°C, 1430°Cand 1450°C.The physical properties and the micrographs of samples are detected. The main conclusions are as following: sintered samples have the best comprehensive performance at 1450°C, the density of the sample is 99.7% and the actual density is 10.91g/cm3. The hardness is 92.8 HRA and the transverse rupture strength (TRS) is 1100MPa. The grain size grows up obviously with the high temperature. The average grain size of WC is 0.7μm and the average size of (W, Ti, Ta)C is 3μm.


2014 ◽  
Vol 616 ◽  
pp. 157-165 ◽  
Author(s):  
Chang Lian Chen ◽  
Hong Quan Wang ◽  
Jia You Ji ◽  
Ma Ya Luo ◽  
Bo Wu ◽  
...  

In this paper, using ZrO2 and Ca (NO3)•4H2O as raw materials, we prepared a series of calica stabilized zirconia (CSZ) ceramics by pressureless sintering method. The results show that the relative densities of all sintered samples are above 90%, and the sintered samples are composed of cubic, tetragonal and monoclinic ZrO2, and the main phase is cubic ZrO2 and tetragonal ZrO2. The content of cubic phase increases with the increase of sintering temperature and adding CaO content. The grain size of the sintered samples is relatively uniform and some pores exist. Increasing the additive amount of CaO, the conductivity first rises and then decreases, and the conductivity value of the sample containing 5wt% CaO is the maximum. When the sintering temperature is up to 1600 oC, the conductivity of the sample containing 5wt% CaO is up to 0.016S•cm-1 at 800 oC. Furthermore, the conductivity of sintered samples is increasing with the increase of test temperature according to the Arrhenius equation.


2007 ◽  
Vol 119 ◽  
pp. 1-4 ◽  
Author(s):  
Young Soon Kwon ◽  
Ji Soon Kim ◽  
Cheol Eeh Kim

Phase transformation induced by ball-milling was studied in this work. It was found that amorphous Fe90Zr10 ribbons undergo crystallization into BCC α-Fe(Zr) under milling in an AGO-2 mill. The decomposition degree of the amorphous phase increased with increasing milling time and intensity. Analyses of samples milled at different speeds suggested that the observed crystallization is a deformation-induced process rather than a thermally induced one. In addition, the decomposition behavior of a FeSn intermetallic under ball-milling was carefully studied. Upon milling a large amount of the FeSn intermetallic decomposed into Fe5Sn3 and FeSn2, where the average grain size of the product phases stayed nearly constant with milling-time. It is suggested that the mechanically driven decomposition of FeSn results from local melting of powder particles due to high temperature pulses during ball collisions.


2010 ◽  
Vol 123-125 ◽  
pp. 197-200 ◽  
Author(s):  
In Jin Shon ◽  
Hyun Su Kang ◽  
Dong Mok Lee ◽  
Kwon Il Na ◽  
In Yong Ko

Nanopowders of Cr and Al2O3 was fabricated from CrO3 and 2Al by high energy ball milling. Dense nanocrystalline Cr-Al2O3 composite was consolidated by pulsed current activated sintering (PCAS) method within 1 min from mechanically alloyed powders. Highly dense Cr-Al2O3 with relative density of up to 99% was produced under simultaneous application of a 80 MPa pressure and the pulsed current. The average grain size and mechanical properties of the composite were investigated.


2012 ◽  
Vol 465 ◽  
pp. 220-223 ◽  
Author(s):  
Chong Cai Zhang ◽  
Quan Wang ◽  
Qun Qun Yuan ◽  
Yong Fei Yang ◽  
Xiao Lan Yi

In this paper, the WC-5TiC-10 Co mixture mixed by WC2.96μm, (Ti, W)C 2.52μm and Co2.38μm and prepared by high-energy ball milling. The result shows: After 60h’s ball milling the powder began to reunite more and more as the time extended . The average grain size of powder is 50 nm after144h. After 1300°C~1400°C vacuum-sintering the hardness of the sample is 94.8 ~ 95.4HRA. 4.2 ~ 5.2 HRA higher than the traditional cemented carbides with the same composition. After 1400°C vacuum-sintering the compressive strength and flexural strength of cemented carbides is 2060 MPa and 1200 MPa. Slightly less than the traditional cemented carbides with the same composition.


2013 ◽  
Vol 750-752 ◽  
pp. 667-670
Author(s):  
C.J. Li ◽  
L. Teng ◽  
J. Tan ◽  
Q. Yuan ◽  
J.J. Tang ◽  
...  

Cu90Zr10 alloy powder was prepared by high-energy ball milling. The microstructure and property evolution of this alloy powder during mechanical alloying (MA) were investigated by using X-ray diffraction and optical microscopy (OM). The alloy powder with an average grain size of 10 - 40 nm was obtained, and the grain size was found to decrease gradually with increasing milling time. The microhardness reached a maximum value (about 295 Hv) after 30 h milling. The internal microstrain and the microhardness of the samples increased due to the grain refinement and solid solution during milling, and 10at.% Zr could be brought into Cu lattice by solid solution during MA. At last, the mechanisms of strengthening were discussed.


2010 ◽  
Vol 105-106 ◽  
pp. 314-316
Author(s):  
Guo Quan Qi ◽  
Jian Feng Zhu ◽  
Hai Bo Mao ◽  
Yang Wu ◽  
Hai Bo Yang ◽  
...  

High voltage zinc varistors was synthesized by high energy milling with Pr6O11 doped ZnO-Bi2O3 system as raw materials. The effects of milling time and sintering temperature on the electrical properties were investigated. The results show that high-energy milling decreases the sintering temperature of the ZnO varistors. The material derived from high-energy milling exhibit high density and good electrical properties at the sintering temperature from 1080 to 1180°C. The samples sintered at 1100 °C have average crystalline grain size of about 5 µm with the optimum values of electrical properties, gradient voltage V1mA is 371 V/mm, leakage current IL is 0.62 µA, non linear coefficient α is 60.


2009 ◽  
Vol 79-82 ◽  
pp. 449-452 ◽  
Author(s):  
Liang Feng Li ◽  
Tai Qiu ◽  
Jian Yang ◽  
Yong Bao Feng

To obtain intermediate temperature alloy solders with melting temperature of 400~600°C, (Ag-Cu28)-25Sn and (Ag-Cu28)-30Sn alloys were prepared by high energy ball milling. Ag-Cu-Sn nanocrystalline alloys have been obtained after milling for 40h. XRD results show that the (Ag-Cu28)-25Sn alloy consists of Ag4Sn and Cu3Sn, and the (Ag-Cu28)-30Sn alloy contains Ag4Sn, Cu3Sn and Cu6Sn5. The small polydispersed particles with size ranging from 1μm to about 25μm are observed from the (Ag-Cu28)-30Sn alloys milled for 40h by SEM. A large amount of small particles comprised of two or three grains are commonly observed by HRTEM, and average grain size is about 17.50nm. DSC results indicate that the melting points of the (Ag-Cu28)-25Sn and (Ag-Cu28)-30Sn alloys milled for 40h are 548.5°C and 539.3°C, respectively.


2007 ◽  
Vol 336-338 ◽  
pp. 1069-1071 ◽  
Author(s):  
H.B. Li ◽  
Jun Ting Luo ◽  
Kai Feng Zhang

The amorphous nano-sized silicon nitride powders were sintered by liquid phase sintering method. Si3N4-Si2N2O composites were in-situ fabricated. The Si2N2O phase was generated by an in-situ reaction 2Si3N4(s)+1.5O2(g)=3Si2N2O(s)+N2(g). The content of Si2N2O phase up to 60% was obtained at a sintering temperature of 1650°C and reduced when the sintering temperature increased or decreased, which indicates that the reaction is reversible. The mass loss, relative density and average grain size increase with increasing of sintering temperature. The average grain size is less than 500nm when the sintering temperature is below 1700°C. During the sintering procedure, there is a complex crystallization and phase transition: amorphous Si3N4 → equiaxial α-Si3N4→ equiaxial β-Si3N4 → rod-likeSi2N2O → needle-like β-Si3N4. Small round-shaped β-Si3N4 particles are entrapped in the Si2N2O grains and a high density of staking faults are situated in the middle of Si2N2O grains at a sintering temperature of 1650°C.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Tae-Wan Kim ◽  
In-Yong Ko ◽  
Jung-Mann Doh ◽  
Jin-Kook Yoon ◽  
In-Jin Shon

A nanopowder ofFe3Alwas synthesized from 3Fe and Al by high-energy ball milling. A dense nanostructuredFe3Alwas consolidated by pulsed current activated sintering method within 2 minutes from mechanically synthesized powders ofFe3Aland horizontally milled powders of 3Fe+Al. The grain size, sintering behavior, and hardness ofFe3Alsintered from horizontally milled 3Fe+Al powders and high-energy ball milledFe3Alpowder were compared.


Sign in / Sign up

Export Citation Format

Share Document