scholarly journals Influence of competing notches on the fatigue strength of cut plate edges

Author(s):  
P. Diekhoff ◽  
J. Drebing ◽  
J. Hensel ◽  
Th. Nitschke-Pagel ◽  
K. Dilger

AbstractMaterial fatigue is one of the elementary causes of damage in steel construction besides corrosion and abrasion. Design recommendations require that weld seams are placed in less stressed areas due to the crack-sensitive nature of the welded areas. As a result, unwelded areas of the components such as free cut plate edges gain technical and economic relevance as locations for potential fatigue cracks. In the metal processing industry, different thermal cutting processes are frequently used. During the process, unwanted boundary conditions can lead to undesired cuts in the component geometry during the cutting process. These process dysfunctions lead to incorrect components and to rejects. This article presents results of fatigue test data of oxy-fuel thermal cut edges of defect-free and faulty repair-welded samples to investigate the influence of competing notches on the cut edge. Specimens are made from construction steels S355N and S690Q of a 20-mm-thick plate. The presented data shows that the fatigue strength of the damaged cut edges can be recovered by the repair procedure and does not show any reduction of the fatigue strength due to the determined pores or other metallurgical notches of the repaired section.

2020 ◽  
Vol 62 (9) ◽  
pp. 891-900
Author(s):  
Jonas Hensel ◽  
Arne Kromm ◽  
Thomas Nitschke-Pagel ◽  
Jonny Dixneit ◽  
Klaus Dilger

Abstract The use of low transformation temperature (LTT) filler materials represents a smart approach for increasing the fatigue strength of welded high strength steel structures apart from the usual procedures of post weld treatment. The main mechanism is based on the effect of the low start temperature of martensite formation on the stress already present during welding. Thus, compressive residual stress formed due to constrained volume expansion in connection with phase transformation become highly effective. Furthermore, the weld metal has a high hardness that can delay the formation of fatigue cracks but also leads to low toughness. Fundamental investigations on the weldability of an LTT filler material are presented in this work, including the characterization of the weld microstructure, its hardness, phase transformation temperature and mechanical properties. Special attention was applied to avoid imperfections in order to ensure a high weld quality for subsequent fatigue testing. Fatigue tests were conducted on the welded joints of the base materials S355J2 and S960QL using conventional filler materials as a comparison to the LTT filler. Butt joints were used with a variation in the weld type (DY-weld and V-weld). In addition, a component-like specimen (longitudinal stiffener) was investigated where the LTT filler material was applied as an additional layer. The joints were characterized with respect to residual stress, its stability during cyclic loading and microstructure. The results show that the application of LTT consumables leads to a significant increase in fatigue strength when basic design guidelines are followed. This enables a benefit from the lightweight design potential of high-strength steel grades.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 843 ◽  
Author(s):  
André Reck ◽  
André Till Zeuner ◽  
Martina Zimmermann

The study presented investigates the fatigue strength of the (α+β) Ti-6Al-4V-ELI titanium alloy processed by laser cutting with and without mechanical post-processing. The surface quality and possible notch effects as a consequence of non-optimized intermediate cutting parameters are characterized and evaluated. The microstructural changes in the heat-affected zone (HAZ) are documented in detail and compared to samples with a mechanically post-processed (barrel grinding, mechanical polishing) surface condition. The obtained results show a significant increase (≈50%) in fatigue strength due to mechanical post-processing correlating with decreased surface roughness and minimized notch effects when compared to the surface quality of the non-optimized laser cutting. The martensitic α’-phase is detected in the HAZ with the formation of distinctive zones compared to the initial equiaxial α+β microstructure. The HAZ could be removed up to 50% by means of barrel grinding and up to 100% through mechanical polishing. A fracture analysis revealed that the fatigue cracks always initiate on the laser-cut edges in the as-cut surface condition, which could be assigned to an irregular macro and micro-notch relief. However, the typical characteristics of the non-optimized laser cutting process (melting drops and significant higher surface roughness) lead to early fatigue failure. The fatigue cracks solely started from the micro-notches of the surface relief and not from the dross. As a consequence, the fatigue properties are dominated by these notches, which lead to significant scatter, as well as decreased fatigue strength compared to the surface conditions with mechanical finishing and better surface quality. With optimized laser-cutting conditions, HAZ will be minimized, and surface roughness strongly decreased, which will lead to significantly improved fatigue strength.


2021 ◽  
Vol 4 (7(112)) ◽  
pp. 50-59
Author(s):  
Leontii Korostylov ◽  
Dmytro Lytvynenko ◽  
Hryhorii Sharun ◽  
Ihor Davydov

The structure of the hull of the project 1288 trawler in a region of fore hold was improved to ensure fatigue strength of assemblies of the intersection of main frames with the second bottom. To this end, a study of the fatigue strength of these assemblies was carried out for the original side structure and two versions of its modernization. Values of internal forces at the points of appearance of fatigue cracks in the compartment have been determined for three design versions of the side. It was found that the greatest forces act in the middle of the fore half of the compartment. Calculations of parameters of the long-term distribution of magnitudes of ranges of total equivalent operating stresses according to the Weibull law in the points of occurrence of fatigue cracks for different design versions of the side grillage have been performed. These parameters were determined for the middle of the fore hold of the vessel and for the areas in which maximum values of bending moment ranges are in effect with and without corrosive wear. Values of total fatigue damage and durability of the studied assemblies were determined. Calculations were carried out by nominal stress method, hot spot stress method, and experimental and theoretical method. It was shown that in order to ensure fatigue strength of the assembly under consideration, it is necessary to extend the intermediate frames of the original version of the side structure to the level of the second bottom fixing them to the deck. It is also necessary to attach a cargo platform to the side thus reducing the frame span. As a result, the level of fatigue damage over 25 years of operation will decrease by about 3.5 times. As it was found, approximate consideration of the slamming effect does not significantly increase the amount of fatigue damage to the assembly. The results of the development of recommendations for modernization of the side structure can be implemented both on ships of the 1288 project and on other ships with a transverse side framing system.


2012 ◽  
Vol 500 ◽  
pp. 484-488
Author(s):  
Wo Bo Zhang

According to analyzing the influence factors of shaft fatigue properties, the matching relationships between fatigue properties and shaft material as well as other relevant factors have been investigated. And the matching relationships have been demonstrated via experimentation. A useful method is established to enhance material fatigue toughness. Considering the aspects of safety, economy and the requirement of fatigue strength, when the dimension of the structure could not be changed, the fatigue properties can be improved via increasing the fillet of the shaft. And 45 carbon steel is a highly recommended shaft material.


Author(s):  
Vasil Georgiev Georgiev ◽  
Dimitar Dakov ◽  
Yavor Mihov

<p>For the majority of steel outdoor facilities (towers, masts, billboards and traffic-sign supporting structures) wind loading is the governing factor for determining their resistance and stiffness. In many cases fatigue-related issues appear, with cracking and failure in the welded connections of tubular joints or in the parent metal adjacent to the welds.</p><p>Structural detailing of the joints in steel tubular structures subjected to repeated cyclic loading is of great importance for their fatigue strength. Sharp changes in the shape, sharp turns in the welds and notches give rise to high stress concentration. The combined effect of discontinuities and stress concentration is the main cause for the formation and propagation of fatigue cracks. When detailing the erection joints it is also necessary to observe technological requirements related to efficiency of fabrication. For the civil engineering works exposed to public it is indispensable to include additional requirements for the aesthetic appearance of their visible structural parts. The design experience shows that applying aesthetic considerations to steel tubular joint detailing may contribute to satisfying the increased fatigue strength requirements.</p><p>The paper presents a study on the wind action on a specific kind of civil engineering works (traffic- sign supporting structures) and the approach used for its determination. The leading structural, technological and aesthetic criteria to be implemented in the detailing of tubular erection joints are formulated. An example of tubular joint destroyed due to propagation of fatigue crack is given and possible options for the joint repair are proposed. Numerical modeling and analyses of the original and repaired joints have been carried out in order to make conclusions for the advantages and shortcomings of the joint repair options.</p>


2021 ◽  
pp. 11-14
Author(s):  

An intelligent system for predicting the fatigue strength of metals in a wide temperature range is developed using a specially trained neural network. The system makes it possible to predict the number of load cycles of a part to failure, as well as the start of formation and growth rate of fatigue cracks for different test conditions, including at low temperatures. Keywords: neural network, prediction of loading cycles, low temperatures, fatigue strength. [email protected]


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2107
Author(s):  
Zhangjianing Cheng ◽  
Xiaojian Cao ◽  
Xiaoli Xu ◽  
Qiangru Shen ◽  
Tianchong Yu ◽  
...  

The effect of nano grain surface layer generated by ultrasonic impact on the fatigue behaviors of a titanium alloy Ti3Zr2Sn3Mo25Nb (TLM) was investigated. Three vibration strike-numbers of 24,000 times, 36,000 times and 48,000 times per unit are chosen to treat the surface of TLM specimens. Nanocrystals with an average size of 30 nm are generated. The dislocation motion plays an important role in the transformation of nanograins. Ultrasonic surface impact improves the mechanical properties of TLM, such as hardness, surface residual stress, tensile strength and fatigue strength. More vibration strike numbers will cause a higher enhancement. With a vibration strike number of 48,000 times per square millimeter the rotating-bending fatigue strength of TLM at 107 cycles is improved by 23.7%. All the fatigue cracks initiate from the surface of untreated specimens, while inner cracks appear after the fatigue life of 106 cycles with the ultrasonic surface impact. The crystal slip in the crack initiation zone is the main way of growth for microcracks. Crack cores are usually formed at the junction of crystals. The stress intensity factor of TLM titanium alloy is approximately 7.0 MPa·m1/2.


Author(s):  
Ian Frazer ◽  
Lindsey Fyffe ◽  
Oliver J. Gibson ◽  
Bill Lucas

A study has demonstrated the automation of underwater thermal cutting processes for remote decommissioning operations. The first phase of cutting trials evaluated five cutting processes underwater (air plasma, oxy-hydrogen, flux-cored arc, oxy-petrol and Kerrie cable systems). In the second phase, three manual cutting systems (oxy-petrol, “Broco” type system and Kerrie cable) were adapted for operation by a manipulator arm of the type commonly used offshore on Remotely Operated Vehicles. This manipulator, which usually requires a human operator, was interfaced to computer simulation and control software. The results of underwater cuts on steel plate using these systems are discussed, with applicability to offshore decommissioning. Ongoing work using other novel thermal cutting processes is also described.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1510
Author(s):  
Abootorab Baqerzadeh Chehreh ◽  
Michael Grätzel ◽  
Jean Pierre Bergmann ◽  
Frank Walther

The load increase method, which is highly efficient in rapidly identifying the fatigue performance and strength of materials, is used in this study to investigate friction stir welded (FSW) EN AW-5754 aluminum alloys. Previous investigations have demonstrated the accuracy and efficiency of this method compared to Woehler tests. In this study, it is shown that the load increase method is a valid, accurate and efficient method for describing the fatigue behavior of FSW weld seams. The specimen tests were performed on 2 mm thick aluminum sheets using conventional and stationary tool configurations. It is shown that an increase in fatigue strength of the FSW EN AW-5754 aluminum alloys can be achieved by using the stationary shoulder tool configuration rather than the conventional one.


Sign in / Sign up

Export Citation Format

Share Document