scholarly journals Experimental prototyping of the adhesion braking control system design concept for a mechatronic bogie

Author(s):  
Sundar Shrestha ◽  
Maksym Spiryagin ◽  
Qing Wu

AbstractThe dynamic parameters of a roller rig vary as the adhesion level changes. The change in dynamics parameters needs to be analysed to estimate the adhesion level. One of these parameters is noise emanating from wheel–rail interaction. Most previous wheel–rail noise analysis has been conducted to mitigate those noises. However, in this paper, the noise is analysed to estimate the adhesion condition at the wheel–rail contact interface in combination with the other methodologies applied for this purpose. The adhesion level changes with changes in operational and environmental factors. To accurately estimate the adhesion level, the influence of those factors is included in this study. The testing and verification of the methodology required an accurate test prototype of the roller rig. In general, such testing and verification involve complex experimental works required by the intricate nature of the adhesion process and the integration of the different subsystems (i.e. controller, traction, braking). To this end, a new reduced-scale roller rig is developed to study the adhesion between wheel and rail roller contact. The various stages involved in the development of such a complex mechatronics system are described in this paper. Furthermore, the proposed brake control system was validated using the test rig under various adhesion conditions. The results indicate that the proposed brake controller has achieved a shorter stopping distance as compared to the conventional brake controller, and the brake control algorithm was able to maintain the operational condition even at the abrupt changes in adhesion condition.

2020 ◽  
Vol 16 (11) ◽  
pp. 1826
Author(s):  
Li Zheng ◽  
Yang Jianwei ◽  
Yao Dechen ◽  
Wang Jinhai ◽  
Pang Qicheng

2015 ◽  
Vol 20 (4) ◽  
pp. 1573-1584 ◽  
Author(s):  
Simone Formentin ◽  
Carlo Novara ◽  
Sergio M. Savaresi ◽  
Mario Milanese

Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 84 ◽  
Author(s):  
Chun-Liang Lin ◽  
Hao-Che Hung ◽  
Jia-Cheng Li

Looking at new trends in global policies, electric vehicles (EVs) are expected to increasingly replace gasoline vehicles in the near future. For current electric vehicles, the motor current driving system and the braking control system are two independent issues with separate design. If a self-induced back-EMF voltage from the motor is a short circuit, then short-circuiting the motor will result in braking. The higher the speed of the motor, the stronger the braking effect. However, the effect is deficient quickly once the motor speed drops quickly. Traditional kinetic brake (i.e., in the short circuit is replaced by a resistor) and dynamic brake (the short circuit brake is replaced by a capacitor) rely on the back EMF alone to generate braking toque. The braking torque generated is usually not enough to effectively stop a rotating motor in a short period of time. In this research task, an integrated driving and braking control system is considered for EVs with an active regenerative braking control system where back electromagnetic field (EMF), controlled by the pulse-width modulation (PWM) technique, is used to charge a pump capacitor. The capacitor is used as an extra energy source cascaded with the battery as a charge pump. This is used to boost braking torque to stop the rotating motor in an efficient way while braking. Experiments are conducted to verify the proposed design. Compared to the traditional kinetic brake and dynamic brake, the proposed active regenerative control system shows better braking performance in terms of stopping time and stopping distance.


2012 ◽  
Vol 588-589 ◽  
pp. 1552-1559
Author(s):  
Lu Zhang ◽  
Guo Ye Wang ◽  
Guo Yan Chen ◽  
Zhong Fu Zhang

This paper proposes an active braking control dynamical system in order to establish a safe and efficient vehicle driving stability control test system. Aiming at Chery A3 sedan, set up the active braking control dynamic simulation system base on MATLAB/Simulink. Adopting the brake driving integration ESP control strategy, analyze and verify the stability control performance of independent vehicle system and vehicle ESP test system based on active braking control respectively in under steering and excessive steering two test conditions. The analyzing results indicate that the test system based on active braking control can effectively assist vehicle travelling in the absence of ESP control or ESP control system failure; when vehicle has ESP control system, the driving stability control performance of this system and independent vehicle system has remarkable consistency. The active braking control system provides a basis for research of vehicle driving stability control test.


2020 ◽  
Vol 10 (5) ◽  
pp. 1789 ◽  
Author(s):  
Hanwu Liu ◽  
Yulong Lei ◽  
Yao Fu ◽  
Xingzhong Li

Currently, the researches on the regenerative braking system (RBS) of the range-extended electric vehicle (R-EEV) are inadequate, especially on the comparison and analysis of the multi-objective optimization (MOO) problem. Actually, the results of the MOO problem should be mutually independent and balanced. With the aim of guaranteeing comprehensive regenerative braking performance (CRBP), a revised regenerative braking control strategy (RRBCS) is introduced, and a method of the MOO algorithm for RRBCS is proposed to balance the braking performance (BP), regenerative braking loss efficiency (RBLE), and battery capacity loss rate (BCLR). Firstly, the models of the main components related to the RBS of the R-EEV for the calculation of optimization objectives are built in MATLAB/Simulink and AVL/Cruise. The BP, RBLE, and BCLR are selected as the optimization objectives. The non-dominated sorting genetic algorithm (NSGA-II) is applied in RRBCS to solve the MOO problem, and a group of the non-inferior Pareto solution sets are obtained. The simulation results show a clear conflict that three optimization objectives cannot be optimal at the same time. Then, we evaluate the performance of the proposed method by taking the individual with the optimal CRBP as the final optimal solution. The comparation among BP, RBLE, BCLR, and CRBP before and after optimization are analyzed and discussed. The results illustrate that characteristic parameters of RRBCS is crucial to optimization objectives. After parameters optimization, regenerative braking torque works early to increase braking energy recovery on low tire-road adhesion condition, and to reduce the battery capacity loss rate at the expense of small braking energy recovery on the medium tire-road adhesion condition. In addition, the results of the sensitivity analysis show that after parameter optimization, RRBCS is proved to perform better road adaptability regarding the distribution of solutions. These results thoroughly validate the proposed approach for multi-objective optimization of RRBCS and have a strong directive to optimize the control strategy parameters of RBS.


2008 ◽  
Vol 2008.45 (0) ◽  
pp. 297-298
Author(s):  
Kenji SUGIOKA ◽  
Hiroshi ENOMOTO ◽  
Noboru HIEDA

2013 ◽  
Vol 694-697 ◽  
pp. 73-76 ◽  
Author(s):  
Cong Wang ◽  
Hong Wei Liu ◽  
Liang Yao ◽  
Yan Bo Wang ◽  
Liang Chu ◽  
...  

A brake pedal stroke simulator is a key component of realizing a Regenerative Braking System. It provides a good pedal feeling to a driver, improves energy recovery and ensures braking security. This paper presents the hardware solution of the braking control system, the structure and key design parameters of a brake pedal stroke simulator. Through simulation, the energy recover rate and brake pedal feeling of drivers can be improved. The simulator can be used to realize the regenerative braking system in hybrid or electric vehicles.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
M.K. Aripin ◽  
Y. M. Sam ◽  
A. D. Kumeresan ◽  
M.F. Ismail ◽  
Peng Kemao

A review study on integrated active steering and braking control for vehicle yaw stability system is conducted and its finding is discussed in this paper. For road-vehicle dynamic, lateral dynamic control is important in order to determine the vehicle stability. The aw stability control system is the prominent approach for vehicle lateral dynamics where the actual yaw rate and sideslip should be tracked by the controller close to the desired response. To improve the performance of yaw stability control during steady state and critical driving conditions, a current approach using active control of integrated steering and braking could be implemented. This review study discusses the vehicle models, control objectives, control problems and propose control strategies for vehicle yaw stability control system. In the view of control system engineering, the transient performances of tracking control are essential. Based on the review, this paper discusses a basic concept of control strategy based on the composite nonlinear feedback (CNF) and sliding mode control (SMC) whichcan be proposed for integrated active steering and braking control in order to improve the transient performances of the yaw rate and sideslip tracking control in the presence of uncertainties and disturbances.


Sign in / Sign up

Export Citation Format

Share Document