scholarly journals Metal matrix nanocomposites in tribology: Manufacturing, performance, and mechanisms

Friction ◽  
2022 ◽  
Author(s):  
Shuaihang Pan ◽  
Kaiyuan Jin ◽  
Tianlu Wang ◽  
Zhinan Zhang ◽  
Long Zheng ◽  
...  

AbstractMetal matrix nanocomposites (MMNCs) become irreplaceable in tribology industries, due to their supreme mechanical properties and satisfactory tribological behavior. However, due to the dual complexity of MMNC systems and tribological process, the anti-friction and anti-wear mechanisms are unclear, and the subsequent tribological performance prediction and design of MMNCs are not easily possible: A critical up-to-date review is needed for MMNCs in tribology. This review systematically summarized the fabrication, manufacturing, and processing techniques for high-quality MMNC bulk and surface coating materials in tribology. Then, important factors determining the tribological performance (mainly anti-friction evaluation by the coefficient of friction (CoF) and anti-wear assessment with wear rate) in MMNCs have been investigated thoroughly, and the correlations have been analyzed to reveal their potential coupling/synergetic roles of tuning tribological behavior of MMNCs. Most importantly, this review combined the classical metal/alloy friction and wear theories and adapted them to give a (semi-)quantitative description of the detailed mechanisms of improved anti-friction and anti-wear performance in MMNCs. To guarantee the universal applications of these mechanisms, their links with the analyzed influencing factors (e.g., loading forces) and characteristic features like tribo-film have been clarified. This approach forms a solid basis for understanding, predicting, and engineering MMNCs’ tribological behavior, instead of pure phenomenology and experimental observation. Later, the pathway to achieve a broader application for MMNCs in tribo-related fields like smart materials, biomedical devices, energy storage, and electronics has been concisely discussed, with the focus on the potential development of modeling, experimental, and theoretical techniques in MMNCs’ tribological processes. In general, this review tries to elucidate the complex tribo-performances of MMNCs in a fundamentally universal yet straightforward way, and the discussion and summary in this review for the tribological performance in MMNCs could become a useful supplementary to and an insightful guidance for the current MMNC tribology study, research, and engineering innovations.

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 125
Author(s):  
Seyed Kiomars Moheimani ◽  
Mehran Dadkhah ◽  
Mohammad Hossein Mosallanejad ◽  
Abdollah Saboori

Metal matrix nanocomposites (MMNCs) with high specific strength have been of interest for numerous researchers. In the current study, Mg matrix nanocomposites reinforced with AlN nanoparticles were produced using the mechanical stirring-assisted casting method. Microstructure, hardness, physical, thermal and electrical properties of the produced composites were characterized in this work. According to the microstructural evaluations, the ceramic nanoparticles were uniformly dispersed within the matrix by applying a mechanical stirring. At higher AlN contents, however, some agglomerates were observed as a consequence of a particle-pushing mechanism during the solidification. Microhardness results showed a slight improvement in the mechanical strength of the nanocomposites following the addition of AlN nanoparticles. Interestingly, nanocomposite samples were featured with higher electrical and thermal conductivities, which can be attributed to the structural effect of nanoparticles within the matrix. Moreover, thermal expansion analysis of the nanocomposites indicated that the presence of nanoparticles lowered the Coefficient of Thermal Expansion (CTE) in the case of nanocomposites. All in all, this combination of properties, including high mechanical strength, thermal and electrical conductivity, together with low CTE, make these new nanocomposites very promising materials for electro packaging applications.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


2016 ◽  
Vol 32 (9) ◽  
pp. 930-953 ◽  
Author(s):  
Z. Hu ◽  
G. Tong ◽  
D. Lin ◽  
C. Chen ◽  
H. Guo ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Payodhar Padhi ◽  
Sachikanta Kar

Addition of nano particles, even in quantities as small as 2 weight percent can enhance the hardness or yield strength by a factor as high as 2. There are several methods for the production of metal matrix nanocomposites including mechanical alloying, vertex process, and spray deposition and so forth. However, the above processes are expensive. Solidification processing is a relatively cheaper route. During solidification processing, nano particulates tend to agglomerate as a result of van der Waals forces and thus proper dispersion of the nano particulate in metal matrix is a challenge. In the present study a noncontact method, where the ultrasonic probe is not in direct contact with the liquid metal, was attempted to disperse nanosized SiC particulates in aluminum matrix. In this method, the mold was subjected to ultrasonic vibration. Hardness measurements and microstructural studies using HRTEM were carried out on samples taken from different locations of the nanocomposite ingot cast by this method.


Sign in / Sign up

Export Citation Format

Share Document