scholarly journals Statistical Analysis of Anode Efficiency in Electrochemical Treatment of Wastewater and Sludge

2020 ◽  
Vol 7 (4) ◽  
pp. 1041-1064
Author(s):  
Jannatul Rumky ◽  
Walter Z. Tang ◽  
Mika Sillanpää

Abstract Electrochemical processes have proven their potential as effective technologies to treat wastewater from industrial, urban and agricultural activities, and thus, contribute towards a cleaner environment. In this study, we aimed to assess the effectiveness of the leading electrochemical technologies, such as electro-oxidation, electrochemical coagulation and electrochemical advanced oxidation processes (EAOPs), statistically for different types of anodes for the removal of various pollutants from wastewater along with their treatment efficiency. Anode is considered as a source of electron and an essential part of electrochemical processes. So, we have evaluated the relationship between different anode features such as anodic material, surface area versus removal of chemical oxygen demand (COD), dissolved organic carbon (DOC) and colour in various wastewater treatment plants (WWTPs) by IBM SPSS Statistics 26. Apart from that, various process characteristics such as inter-electrode distance, system pH, reactor volume, current density and voltage were also considered in this investigation. From the regression analysis of the electrochemical coagulation system, it was found that the removal efficiency of pollutants is enhanced by the surface area of the electrodes along with the inter-electrode distance. Regarding electro-oxidation, it was seen that COD and colour removal are both dependent on the reaction time of the system, while the DOC removal rate of different EAOPs was strongly related to the reactor volume. Furthermore, the uncertainty of the regression analysis on pollutant removal efficiency prediction was assessed. Finally, sensitivity analysis was done by Monte-Carlo method to check modest changes from input variables.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dang Trung Tri Trinh ◽  
Duangdao Channei ◽  
Auppatham Nakaruk ◽  
Wilawan Khanitchaidecha

AbstractThe nanocomposite of BiVO4-based material has been synthesized by one-step solvent method. The morphological, physical, chemical properties of the nanocomposite have been investigated. The results revealed that the surface area of BiVO4, BiVO4/SiO2 and BiVO4/SiO2/GO was 11.13, 28.47 and 43.93 m2/g, respectively. The structural test by XRD proved that the nanocomposites were monoclinic phase of bismuth vanadate. Adsorption and photocatalytic degradation were two main mechanisms that strongly related to pollutant removal efficiency (i.e., methylene blue and phenol). The BiVO4/SiO2/GO nanocomposite obtained the greatest MB removal efficiency due to its high adsorption ability from high surface area, whereas the photocatalytic degradation was insignificant mechanism. In contrast, the relatively low adsorption ability of BiVO4/SiO2/GO nanocomposite was observed when the pollutant was phenol due to negative charge and high stability of phenoxide ions, then the photocatalytic degradation became the main mechanism for phenol removal. The phenol removal efficiency reached approximately 70% in 6 h with H2O2 assistance. The combination of SiO2 and GO improved the surface property of BiVO4-based photocatalyst, however the excessive combination ratio generated the excellent adsorbent material rather than the photocatalyst. Hence, the optimal combination ratio is essential to archive the greatest nanocomposite for photocatalytic application.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 320
Author(s):  
Qianyao Si ◽  
Mary G. Lusk ◽  
Patrick W. Inglett

Stormwater infiltration basins (SIBs) are vegetated depressions that collect stormwater and allow it to infiltrate to underlying groundwater. Their pollutant removal efficiency is affected by the properties of the soils in which they are constructed. We assessed the soil nitrogen (N) cycle processes that produce and remove inorganic N in two urban SIBs, with the goal of further understanding the mechanisms that control N removal efficiency. We measured net N mineralization, nitrification, and potential denitrification in wet and dry seasons along a sedimentation gradient in two SIBs in the subtropical Tampa, Florida urban area. Net N mineralization was higher in the wet season than in the dry season; however, nitrification was higher in the dry season, providing a pool of highly mobile nitrate that would be susceptible to leaching during periodic dry season storms or with the onset of the following wet season. Denitrification decreased along the sediment gradient from the runoff inlet zone (up to 5.2 μg N/g h) to the outermost zone (up to 3.5 μg N/g h), providing significant spatial variation in inorganic N removal for the SIBs. Sediment accumulating around the inflow areas likely provided a carbon source, as well as maintained stable anaerobic conditions, which would enhance N removal.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1086
Author(s):  
Mario Licata ◽  
Roberto Ruggeri ◽  
Nicolò Iacuzzi ◽  
Giuseppe Virga ◽  
Davide Farruggia ◽  
...  

Dairy wastewater (DWW) contains large amounts of mineral and organic compounds, which can accumulate in soil and water causing serious environmental pollution. A constructed wetland (CW) is a sustainable technology for the treatment of DWW in small-medium sized farms. This paper reports a two-year study on the performance of a pilot-scale horizontal subsurface flow system for DWW treatment in Sicily (Italy). The CW system covered a total surface area of 100 m2 and treated approximately 6 m3 per day of wastewater produced by a small dairy farm, subsequent to biological treatment. Removal efficiency (RE) of the system was calculated. The biomass production of two emergent macrophytes was determined and the effect of plant growth on organic pollutant RE was recorded. All DWW parameters showed significant differences between inlet and outlet. For BOD5 and COD, RE values were 76.00% and 62.00%, respectively. RE for total nitrogen (50.70%) was lower than that of organic compounds. RE levels of microbiological parameters were found to be higher than 80.00%. Giant reed produced greater biomass than umbrella sedge. A seasonal variation in RE of organic pollutants was recorded due to plant growth rate Our findings highlight the efficient use of a CW system for DWW treatment in dairy-cattle farms.


2021 ◽  
Vol 13 (8) ◽  
pp. 4184
Author(s):  
Zhiying Xu ◽  
Caterina Valeo ◽  
Angus Chu ◽  
Yao Zhao

This research investigates the use of a common food waste product for removing four different types of metals typically found in stormwater. Whole, unprocessed oyster shells are explored for use in stormwater management infrastructure that addresses water quality concerns. The role of the shells’ surface area, exposure time, and the solution’s initial concentration on the removal efficiency were examined. Beaker scale experimental results demonstrated very good efficiency by the oyster shells for removing copper ions (80–95%), cadmium ions (50–90%), and zinc ions (30–80%) but the shells were not as effective in removing hexavalent chromium (20–60%). There was a positive relationship between initial concentration and removal efficiency for copper and zinc ions, a negative relationship for hexavalent chromium, and no relationship was found for cadmium ions. There was also a positive relationship between surface area and removal efficiency, and exposure time and removal efficiency. However, after a certain exposure time, the increase in removal efficiency was negligible and desorption was occasionally observed. A mid-scale experiment to mimic real-world conditions was conducted in which continuous inflow based on a 6-h design storm was applied to 2.7 kg of whole, unprocessed oyster shells. The shells provided an 86% and an 84% removal efficiency of cadmium and copper ions, respectively, in one day of hydraulic retention time. No removal was observed for hexavalent chromium, and zinc ion removal was only observed after initial leaching. This work has significant implications for sustainable stormwater infrastructure design using a material commonly found in municipal food waste.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Garima Rathee ◽  
Amardeep Awasthi ◽  
Damini Sood ◽  
Ravi Tomar ◽  
Vartika Tomar ◽  
...  

Abstract It would be of great significance to introduce a new biocompatible Layered Double Hydroxide (LDH) for the efficient remediation of wastewater. Herein, we designed a facile, biocompatible and environmental friendly layered double hydroxide (LDH) of NiFeTi for the very first time by the hydrothermal route. The materialization of NiFeTi LDH was confirmed by FTIR, XRD and Raman studies. BET results revealed the high surface area (106 m2/g) and the morphological studies (FESEM and TEM) portrayed the sheets-like structure of NiFeTi nanoparticles. The material so obtained was employed as an efficient adsorbent for the removal of organic dyes from synthetic waste water. The dye removal study showed >96% efficiency for the removal of methyl orange, congo red, methyl blue and orange G, which revealed the superiority of material for decontamination of waste water. The maximum removal (90%) of dyes was attained within 2 min of initiation of the adsorption process which supported the ultrafast removal efficiency. This ultrafast removal efficiency was attributed to high surface area and large concentration of -OH and CO32− groups present in NiFeTi LDH. In addition, the reusability was also performed up to three cycles with 96, 90 and 88% efficiency for methyl orange. Furthermore, the biocompatibility test on MHS cell lines were also carried which revealed the non-toxic nature of NiFeTi LDH at lower concentration (100% cell viability at 15.6 μg/ml). Overall, we offer a facile surfactant free method for the synthesis of NiFeTi LDH which is efficient for decontamination of anionic dyes from water and also non-toxic.


2011 ◽  
Vol 130-134 ◽  
pp. 856-859
Author(s):  
Chun Sheng Ding ◽  
Yang Ping Fu ◽  
Qian Fen Zhu ◽  
Jing Fu

In this experiment quartz sand was chosen as a carrier to be coated by aluminous salt under alkaline condition, and then the specific surface area was tested, and the adsorption capability and Cd2+ removal influencing factors of modified sand were studied. The investigation results showed that the specific surface area of modified sand was 75.244m2/g which was 9.38 times of that of original sand; the removal efficiency of Cd2+ by aluminous salt modified sand reached 59% contrast to 39% of original sand with pH 7.00. It was also found that the removal efficiency of Cd2+ by the aluminous salt modified sand was reduced with the increase of initial concentration of Cd2+ solution, and was enhanced with the increase of pH value, the Cd2+ removal efficiency was almost 71% with pH 9.0.


1997 ◽  
Vol 35 (5) ◽  
pp. 1-10 ◽  
Author(s):  
K. R. Reddy ◽  
E. M. D'Angelo

Wetlands support several aerobic and anaerobic biogeochemical processes that regulate removal/retention of pollutants, which has encouraged the intentional use of wetlands for pollutant abatement. The purpose of this paper is to present a brief review of key processes regulating pollutant removal and identify potential indicators that can be measured to evaluate treatment efficiency. Carbon and toxic organic compound removal efficiency can be determined by measuring soil or water oxygen demand, microbial biomass, soil Eh and pH. Similarly, nitrate removal can be predicted by dissolved organic C and microbial biomass. Phosphorus retention can be described by the availability of reactive Fe and Al in acid soils and Ca and Mg in alkaline soils. Relationships between soil processes and indicators are useful tools to transfer mechanistic information between diverse types of wetland treatment systems.


Sign in / Sign up

Export Citation Format

Share Document