Effect of Sliding Movement Mechanism on Contact Wear Behavior of Composite Materials in Simulation of Oral Environment

Author(s):  
Efe Çetin Yilmaz
1997 ◽  
Vol 119 (4) ◽  
pp. 694-699 ◽  
Author(s):  
Sung Won Han ◽  
Thierry A. Blanchet

A model for the steady-state wear behavior of polymer composite materials, including the effects of preferential load support by and surface accumulation of wear-resistant filler particles, is further developed. It is shown that the resultant inverse rule-of-mixtures description of steady-state composite wear rate behavior is independent of the assumed form of filler contact pressure, though preferential load support does affect the degree of surface accumulation of filler particles that occurs. The validity of these descriptions of steady-state wear behavior and surface accumulation as functions of bulk filler volume fraction are investigated by experiments with copper particle-filled PTFE composites for bulk filler volume fractions from 0 to 40 percent. The applicability of the description of surface accumulation for this composite system was limited to bulk filler volume fractions less than 20 percent, a hypothesized result of transition in load-sharing between filler and matrix. The inverse rule-of-mixtures description of steady-state wear rate, however, was maintained over the full range of volume fractions investigated.


2019 ◽  
Vol 16 (2) ◽  
pp. 725-728
Author(s):  
Prabhu G. Rubesh ◽  
P. Jayaseelan ◽  
Mona Sahu

The aim of this research is to fabricate aluminum based metal matrix composite and reviewing its tensile strength and wear behavior of produced test specimen. In this work an attempt is made to develop an aluminium based MMCs with reinforcing material and stir casting technique has been used to achieve this. Aluminum alloy (LM6) and Magnesium (Mg), Copper (Cu) was chosen as metal matrix and composite materials respectively, tensile and wear experiments has been conducted by varying the composition of Cu (0.150%, 0.175% and 2%) while keeping Mg (0.150%) as constant. The result shows that the increase in addition of copper increases the tensile strength and wears resistance and decreases the percentage of elongation.


2015 ◽  
Vol 58 (3) ◽  
pp. 481-489 ◽  
Author(s):  
B. M. Girish ◽  
B. M. Satish ◽  
Sadanand Sarapure ◽  
D. R. Somashekar ◽  
Basawaraj

2007 ◽  
Vol 539-543 ◽  
pp. 797-802
Author(s):  
B.M. Satish ◽  
B.M. Girish

The wear behavior of unreinforced as well as feldspar particles reinforced copper alloy (phosphor-bronze) composites was studied as a function of sliding speed and applied loads under unlubricated conditions. The content of feldspar particles in the composites was varied from 1- 5% by weight in steps of 2%. A pin-on-disc wear tester was used to evaluate the wear rate. Loads of 20-160 N in steps of 20 N and speeds of 1.25, 1.56, and 1.87 m/s were employed. The results indicated that the wear rate of both the composites and the alloy increased with increase in load and sliding speed. However, the composites exhibited lower wear rate than the alloy. It was found that above a critical applied load, there exists a transition from mild to severe wear both in the unreinforced alloy and in the composites. But the transition loads for the composites were much higher than that of the alloy. The transition loads increase with the increase in weight % of feldspar particles, but decreases with the increase in sliding speeds.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Omar Hussain ◽  
Shahid Saleem Sheikh ◽  
Babar Ahmad

Purpose This study aims to fabricate and investigate the tribological performance of ultra-high molecular weight polyethylene (UHMWPE)-based composite materials reinforced with 0.5, 1 and 2 weight percentage of graphene nanoplatelets (GNPs) while keeping the weight percentage of vitamin C constant at 2% for each composite. Design/methodology/approach In this paper, the composites were fabricated using hot pressing, and the dispersion of GNP/vitamin C/UHMWPE hybrid composite was investigated by X-ray diffraction. Experimental trials were performed according to ASTM F732 on a reciprocating sliding tribometer (pin-on-disc) at human body temperature of 37 ± 1 °C, for a load of 52 N, to assess the role of these fillers on the tribological properties of UHMWPE against Ti6Al4V counter body material under dry and lubricating (human serum) environment. Findings In this study, it has been observed that friction and wear behavior of the developed composites improve with increase in weight percentage of GNP, and human serum adheres to the surface of the composite pins upon sliding, resulting in the formation of a film, which results in better wear resistance of the composite pins under human serum lubrication than dry sliding. Scanning electron microscope was used to investigate the worn surface morphological examination of the composite materials. Specific wear rate of 0.76 × 10−7 mm3/Nm was attained for 2 Wt.% GNP-filled composite under human serum lubrication. Practical implications The results indicate the compatibility of the composite material used in this study and suggested the in vitro implant application. Originality/value The presented work includes novel study of synergistic effect of GNP (which acts as a solid lubricant) and vitamin C (added as an antioxidant) on the tribological performance of UHMWPE under dry and human serum lubrication.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540021
Author(s):  
Jin Cheol Ha ◽  
Yun-Hae Kim ◽  
Myeong-Hoon Lee ◽  
Kyung-Man Moon ◽  
Se-Ho Park

This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H 2 SO 4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H 2 SO 4 concentration because of the space made between resins and reinforced materials.


Nano Hybrids ◽  
2016 ◽  
Vol 10 ◽  
pp. 14-19 ◽  
Author(s):  
S. Nallusamy

Now a days composite material plays an important role in many industrial applications due to their excellent mechanical properties. Presently researchers are making composite materials using various filler materials to characterize the wear behavior of the composite which is used as a machine component in various industrial applications and in machine house hold articles for daily use to highly sophisticated applications. This is due to the proven fact that composite materials acquire higher strength to weight ratio. In this investigation Nano composites of E-Glass fiber/Multi walled carbon nano tube were prepared by the technique of hand layup. The glass fiber used for current investigation is E-glass fiber bi-directional of 45 degree orientation. The composite material samples were prepared in the form of a plate with a thickness of 4 mm. The fabricated composite materials were cut into analogous profiles as per ASTM for tensile and flexural testing analysis. This investigation reveals that the growth of Multi Walled Carbon Nano Tube (MWCNT) particles improves considerably the mechanical properties even if the fabrication is done by manual method like the technique of hand layup.


Sign in / Sign up

Export Citation Format

Share Document