scholarly journals fSDE: efficient evolutionary optimisation for many-objective aero-engine calibration

Author(s):  
Jialin Liu ◽  
Qingquan Zhang ◽  
Jiyuan Pei ◽  
Hao Tong ◽  
Xudong Feng ◽  
...  

AbstractEngine calibration aims at simultaneously adjusting a set of parameters to ensure the performance of an engine under various working conditions using an engine simulator. Due to the large number of engine parameters to be calibrated, the performance measurements to be considered, and the working conditions to be tested, the calibration process is very time-consuming and relies on the human knowledge. In this paper, we consider non-convex constrained search space and model a real aero-engine calibration problem as a many-objective optimisation problem. A fast many-objective evolutionary optimisation algorithm with shift-based density estimation, called fSDE, is designed to search for parameters with an acceptable performance accuracy and improve the calibration efficiency. Our approach is compared to several state-of-the-art many- and multi-objective optimisation algorithms on the well-known many-objective optimisation benchmark test suite and a real aero-engine calibration problem, and achieves superior performance. To further validate our approach, the studied aero-engine calibration is also modelled as a single-objective optimisation problem and optimised by some classic and state-of-the-art evolutionary algorithms, compared to which fSDE not only provides more diverse solutions but also finds solutions of high-quality faster.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4171
Author(s):  
Rabia Ikram ◽  
Badrul Mohamed Jan ◽  
Akhmal Sidek ◽  
George Kenanakis

An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1997
Author(s):  
Bin Lu ◽  
Haijun Xuan ◽  
Xiaojian Ma ◽  
Fangjun Han ◽  
Weirong Hong ◽  
...  

Labyrinth-honeycomb seals are a state-of-the-art sealing technology commonly used in aero-engine interstage seal. The undesirable severe rub between the seal fins and the honeycomb due to the clearance change may induce the cracking of the seal fins. A pervious study investigated the wear of the seal fins at different radial incursion rates. However, due to the axial thrust and mounting clearance, the axial rub between the seal fins and the honeycomb may occur. Hence, this paper focuses on the influence of the axial rub added in the radial rub on the wear of the seal fins. The rub tests results, including rubbing forces and temperature, wear rate, worn morphology, cross-sectional morphology and energy dispersive spectroscopy results, are presented and discussed. Overall, the participation of the axial rub leads to higher rubbing forces, temperature, and wear rate. The tribo-layer on the seal fin is thicker and the cracks are more obvious at high axial incursion rate. These phenomena indicate the axial rub has a negative influence on the wear of the seal fins and should be avoided.


Author(s):  
Neophytos Chiras ◽  
Ceri Evans ◽  
David Rees

This paper examines the estimation of a global nonlinear gas turbine model using NARMAX techniques. Linear models estimated on small-signal data are first examined and the need for a global nonlinear model is established. A nonparametric analysis of the engine nonlinearity is then performed in the time and frequency domains. The information obtained from the linear modelling and nonlinear analysis is used to restrict the search space for nonlinear modelling. The nonlinear model is then validated using large-signal data and its superior performance illustrated by comparison with a linear model. This paper illustrates how periodic test signals, frequency domain analysis and identification techniques, and time-domain NARMAX modelling can be effectively combined to enhance the modelling of an aircraft gas turbine.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Octavio Camarena ◽  
Erik Cuevas ◽  
Marco Pérez-Cisneros ◽  
Fernando Fausto ◽  
Adrián González ◽  
...  

The Locust Search (LS) algorithm is a swarm-based optimization method inspired in the natural behavior of the desert locust. LS considers the inclusion of two distinctive nature-inspired search mechanism, namely, their solitary phase and social phase operators. These interesting search schemes allow LS to overcome some of the difficulties that commonly affect other similar methods, such as premature convergence and the lack of diversity on solutions. Recently, computer vision experiments in insect tracking methods have conducted to the development of more accurate locust motion models than those produced by simple behavior observations. The most distinctive characteristic of such new models is the use of probabilities to emulate the locust decision process. In this paper, a modification to the original LS algorithm, referred to as LS-II, is proposed to better handle global optimization problems. In LS-II, the locust motion model of the original algorithm is modified incorporating the main characteristics of the new biological formulations. As a result, LS-II improves its original capacities of exploration and exploitation of the search space. In order to test its performance, the proposed LS-II method is compared against several the state-of-the-art evolutionary methods considering a set of benchmark functions and engineering problems. Experimental results demonstrate the superior performance of the proposed approach in terms of solution quality and robustness.


1921 ◽  
Vol 25 (123) ◽  
pp. 130-165

In the following paper the writer's aim is to indicate certain possible lines of development and research which his own investigations and preliminary experiments have shown to be at least worthy of serious consideration.If we review the present state of the art we find the position to be substantially as follows :—From a thermodynamic point of view the performance of the modern aero engine has approached so nearly to the ideal obtainable from the cycle on which it operates that there is little scope for improvement.


2020 ◽  
Vol 34 (04) ◽  
pp. 3641-3648 ◽  
Author(s):  
Eli Chien ◽  
Antonia Tulino ◽  
Jaime Llorca

The geometric block model is a recently proposed generative model for random graphs that is able to capture the inherent geometric properties of many community detection problems, providing more accurate characterizations of practical community structures compared with the popular stochastic block model. Galhotra et al. recently proposed a motif-counting algorithm for unsupervised community detection in the geometric block model that is proved to be near-optimal. They also characterized the regimes of the model parameters for which the proposed algorithm can achieve exact recovery. In this work, we initiate the study of active learning in the geometric block model. That is, we are interested in the problem of exactly recovering the community structure of random graphs following the geometric block model under arbitrary model parameters, by possibly querying the labels of a limited number of chosen nodes. We propose two active learning algorithms that combine the use of motif-counting with two different label query policies. Our main contribution is to show that sampling the labels of a vanishingly small fraction of nodes (sub-linear in the total number of nodes) is sufficient to achieve exact recovery in the regimes under which the state-of-the-art unsupervised method fails. We validate the superior performance of our algorithms via numerical simulations on both real and synthetic datasets.


Author(s):  
Yu Zeng ◽  
Yan Gao ◽  
Jiaqi Guo ◽  
Bei Chen ◽  
Qian Liu ◽  
...  

Neural semantic parsers usually fail to parse long and complicated utterances into nested SQL queries, due to the large search space. In this paper, we propose a novel recursive semantic parsing framework called RECPARSER to generate the nested SQL query layer-by-layer. It decomposes the complicated nested SQL query generation problem into several progressive non-nested SQL query generation problems. Furthermore, we propose a novel Question Decomposer module to explicitly encourage RECPARSER to focus on different components of an utterance when predicting SQL queries of different layers. Experiments on the Spider dataset show that our approach is more effective compared to the previous works at predicting the nested SQL queries. In addition, we achieve an overall accuracy that is comparable with state-of-the-art approaches.


Author(s):  
Kalev Kask ◽  
Bobak Pezeshki ◽  
Filjor Broka ◽  
Alexander Ihler ◽  
Rina Dechter

Abstraction Sampling (AS) is a recently introduced enhancement of Importance Sampling that exploits stratification by using a notion of abstractions: groupings of similar nodes into abstract states. It was previously shown that AS performs particularly well when sampling over an AND/OR search space; however, existing schemes were limited to ``proper'' abstractions in order to ensure unbiasedness, severely hindering scalability. In this paper, we introduce AOAS, a new Abstraction Sampling scheme on AND/OR search spaces that allow more flexible use of abstractions by circumventing the properness requirement. We analyze the properties of this new algorithm and, in an extensive empirical evaluation on five benchmarks, over 480 problems, and comparing against other state of the art algorithms, illustrate AOAS's properties and show that it provides a far more powerful and competitive Abstraction Sampling framework.


Author(s):  
Xiaotong Lu ◽  
Han Huang ◽  
Weisheng Dong ◽  
Xin Li ◽  
Guangming Shi

Network pruning has been proposed as a remedy for alleviating the over-parameterization problem of deep neural networks. However, its value has been recently challenged especially from the perspective of neural architecture search (NAS). We challenge the conventional wisdom of pruning-after-training by proposing a joint search-and-training approach that directly learns a compact network from the scratch. By treating pruning as a search strategy, we present two new insights in this paper: 1) it is possible to expand the search space of networking pruning by associating each filter with a learnable weight; 2) joint search-and-training can be conducted iteratively to maximize the learning efficiency. More specifically, we propose a coarse-to-fine tuning strategy to iteratively sample and update compact sub-network to approximate the target network. The weights associated with network filters will be accordingly updated by joint search-and-training to reflect learned knowledge in NAS space. Moreover, we introduce strategies of random perturbation (inspired by Monte Carlo) and flexible thresholding (inspired by Reinforcement Learning) to adjust the weight and size of each layer. Extensive experiments on ResNet and VGGNet demonstrate the superior performance of our proposed method on popular datasets including CIFAR10, CIFAR100 and ImageNet.


2003 ◽  
Vol 11 (2) ◽  
pp. 151-167 ◽  
Author(s):  
Andrea Toffolo ◽  
Ernesto Benini

A key feature of an efficient and reliable multi-objective evolutionary algorithm is the ability to maintain genetic diversity within a population of solutions. In this paper, we present a new diversity-preserving mechanism, the Genetic Diversity Evaluation Method (GeDEM), which considers a distance-based measure of genetic diversity as a real objective in fitness assignment. This provides a dual selection pressure towards the exploitation of current non-dominated solutions and the exploration of the search space. We also introduce a new multi-objective evolutionary algorithm, the Genetic Diversity Evolutionary Algorithm (GDEA), strictly designed around GeDEM and then we compare it with other state-of-the-art algorithms on a well-established suite of test problems. Experimental results clearly indicate that the performance of GDEA is top-level.


Sign in / Sign up

Export Citation Format

Share Document