scholarly journals TVS: a trusted verification scheme for office documents based on blockchain

Author(s):  
Xue Zhai ◽  
Shanchen Pang ◽  
Min Wang ◽  
Sibo Qiao ◽  
Zhihan Lv

AbstractTo realize the encryption of document information, authority authentication, and traceability of historical records, we propose a trusted verification scheme (TVS) for office documents to ensure security. Specifically, the scheme is realized by timestamps, smart contracts (or chaincode), and other blockchain technologies. It is based on the features of blockchain, such as security, credibility, immutability, and traceability of network behavior. And the TVS stores users and documents information through blockchain; it can monitor the state changes of office documents in real time by setting the trigger conditions of smart contracts. The experiment indicates that we have realized the real-time monitoring of data and the traceability of historical records. Moreover, we have achieved the purpose of document encryption and authority authentication, ensuring the authenticity and objectivity of data, avoiding the illegal tampering of malicious users to realize the trusted verification for documents.

2021 ◽  
Vol 13 (4) ◽  
pp. 703
Author(s):  
Lvyang Ye ◽  
Yikang Yang ◽  
Xiaolun Jing ◽  
Jiangang Ma ◽  
Lingyu Deng ◽  
...  

With the rapid development of satellite technology and the need to satisfy the increasing demand for location-based services, in challenging environments such as indoors, forests, and canyons, there is an urgent need to improve the position accuracy in these environments. However, traditional algorithms obtain the position solution through time redundancy in exchange for spatial redundancy, and they require continuous observations that cannot satisfy the real-time location services. In addition, they must also consider the clock bias between the satellite and receiver. Therefore, in this paper, we provide a single-satellite integrated navigation algorithm based on the elimination of clock bias for broadband low earth orbit (LEO) satellite communication links. First, we derive the principle of LEO satellite communication link clock bias elimination; then, we give the principle and process of the algorithm. Next, we model and analyze the error of the system. Subsequently, based on the unscented Kalman filter (UKF), we model the state vector and observation vector of our algorithm and give the state and observation equations. Finally, for different scenarios, we conduct qualitative and quantitative analysis through simulations, and the results show that, whether in an altimeter scenario or non-altimeter scenario, the performance indicators of our algorithm are significantly better than the inertial navigation system (INS), which can effectively overcome the divergence problem of INS; compared with the medium earth orbit (MEO) constellation, the navigation trajectory under the LEO constellation is closer to the real trajectory of the aircraft; and compared with the traditional algorithm, the accuracy of each item is improved by more than 95%. These results show that our algorithm not only significantly improves the position error, but also effectively suppresses the divergence of INS. The algorithm is more robust and can satisfy the requirements of cm-level real-time location services in challenging environments.


2015 ◽  
Vol 738-739 ◽  
pp. 1105-1110 ◽  
Author(s):  
Yuan Qing Qin ◽  
Ying Jie Cheng ◽  
Chun Jie Zhou

This paper mainly surveys the state-of-the-art on real-time communicaton in industrial wireless local networks(WLANs), and also identifys the suitable approaches to deal with the real-time requirements in future. Firstly, this paper summarizes the features of industrial WLANs and the challenges it encounters. Then according to the real-time problems of industrial WLAN, the fundamental mechanism of each recent representative resolution is analyzed in detail. Meanwhile, the characteristics and performance of these resolutions are adequately compared. Finally, this paper concludes the current of the research and discusses the future development of industrial WLANs.


2020 ◽  
Vol 20 (2020) ◽  
pp. 213-214
Author(s):  
Maria de Fátima Rosolem ◽  
Vinicius Zimmermann Silva ◽  
Raul Beck ◽  
Aghatta Cioquetta Moreira ◽  
Sandra Maria Campanholi Tome ◽  
...  

2017 ◽  
Vol 19 (26) ◽  
pp. 17187-17198 ◽  
Author(s):  
Marshall R. Ligare ◽  
Grant E. Johnson ◽  
Julia Laskin

Real-time monitoring of the gold cluster synthesis by electrospray ionization mass spectrometry reveals distinct formation pathways for Au8, Au9 and Au10 clusters.


Author(s):  
Neng Huang ◽  
Junxing Zhu ◽  
Chaonian Guo ◽  
Shuhan Cheng ◽  
Xiaoyong Li

With the rapid development of mobile Internet, there is a higher demand for the real-time, reliability and availability of information systems and to prevent the possible systemic risks of information systems, various business consistency standards and regulatory guidelines have been published, such as Recovery Time Object (RTO) and Recovery Point Object (RPO). Some of the current related researches focus on the standards, methods, management tools and technical frameworks of business consistency, while others study the data consistency algorithms in the cases of large data, cloud computing and distributed storage. However, few researchers have studied on how to monitor the data consistency and RPO of production-disaster recovery, and what architecture and technology should be applied in the monitoring. Moreover, in some information systems, due to the complex structures and distributions of data, it is difficult for traditional methods to quickly detect and accurately locate the first error data. Besides, due to the separation of production data center (PDC) and disaster recovery data center (DRDC), it is difficult to calculate the data difference and RPO between the two centers. This paper first discusses the architecture of remote distributed DRDCs. The architecture can make the disaster recovery (DR) system always online and the data always readable, and support the real-time monitoring of data availability, consistency as well as other related indicators, in this way to make DRDC out-of-the-box in disasters. Second, inspired by blockchain, this paper proposes a method to realize real-time monitoring of data consistency and RTO by building hash chains for PDC and DRDC. Third, this paper evaluates the hash chain operations from the algorithm time complexity, the data consistency, and the validity of RPO monitoring algorithms and since DR system is actually a kind of distributed system, the proposed approach can also be applied to the data consistency detection and data difference monitoring in other distributed systems.


2005 ◽  
Vol 340 (2) ◽  
pp. 187-192 ◽  
Author(s):  
Kazuhisa Okamoto ◽  
Kiyoshi Onai ◽  
Norihiko Ezaki ◽  
Toru Ofuchi ◽  
Masahiro Ishiura

Sign in / Sign up

Export Citation Format

Share Document