scholarly journals CARNet: Cascade attentive RefineNet for multi-lesion segmentation of diabetic retinopathy images

Author(s):  
Yanfei Guo ◽  
Yanjun Peng

AbstractDiabetic retinopathy is the leading cause of blindness in working population. Lesion segmentation from fundus images helps ophthalmologists accurately diagnose and grade of diabetic retinopathy. However, the task of lesion segmentation is full of challenges due to the complex structure, the various sizes and the interclass similarity with other fundus tissues. To address the issue, this paper proposes a cascade attentive RefineNet (CARNet) for automatic and accurate multi-lesion segmentation of diabetic retinopathy. It can make full use of the fine local details and coarse global information from the fundus image. CARNet is composed of global image encoder, local image encoder and attention refinement decoder. We take the whole image and the patch image as the dual input, and feed them to ResNet50 and ResNet101, respectively, for downsampling to extract lesion features. The high-level refinement decoder uses dual attention mechanism to integrate the same-level features in the two encoders with the output of the low-level attention refinement module for multiscale information fusion, which focus the model on the lesion area to generate accurate predictions. We evaluated the segmentation performance of the proposed CARNet on the IDRiD, E-ophtha and DDR data sets. Extensive comparison experiments and ablation studies on various data sets demonstrate the proposed framework outperforms the state-of-the-art approaches and has better accuracy and robustness. It not only overcomes the interference of similar tissues and noises to achieve accurate multi-lesion segmentation, but also preserves the contour details and shape features of small lesions without overloading GPU memory usage.

2020 ◽  
Vol 34 (08) ◽  
pp. 13267-13272
Author(s):  
Alex Foo ◽  
Wynne Hsu ◽  
Mong Li Lee ◽  
Gilbert Lim ◽  
Tien Yin Wong

Although deep learning for Diabetic Retinopathy (DR) screening has shown great success in achieving clinically acceptable accuracy for referable versus non-referable DR, there remains a need to provide more fine-grained grading of the DR severity level as well as automated segmentation of lesions (if any) in the retina images. We observe that the DR severity level of an image is dependent on the presence of different types of lesions and their prevalence. In this work, we adopt a multi-task learning approach to perform the DR grading and lesion segmentation tasks. In light of the lack of lesion segmentation mask ground-truths, we further propose a semi-supervised learning process to obtain the segmentation masks for the various datasets. Experiments results on publicly available datasets and a real world dataset obtained from population screening demonstrate the effectiveness of the multi-task solution over state-of-the-art networks.


2020 ◽  
Vol 64 (2) ◽  
pp. 20502-1-20502-10
Author(s):  
Duygu Çelik Ertuğrul ◽  
Yıltan Bitirim ◽  
Basmah Yakoub Anber

Abstract Diabetic Retinopathy (DR) is a medical condition, also known as diabetic eye disease, which is vision-threatening damage to the retina of the eye caused by diabetes. As the technology advances, researchers are becoming more interested in intelligent medical diagnosis systems to assist screening of DR in earlier stages. In this study, variety of state-of-the-art procedures are used to extract the anatomic segments and lesions from the color fundus images. In addition, an automated system is proposed for the detection of anatomic segments and lesions by grading approach to help clinical diagnosis of the DR analysis. Four publicly available databases of color fundus images and various appropriate measurement techniques are used to compare quantitatively the performance of the proposed system. The experiments conducted on DIARETDB0, DIARETDB1, STARE, and HRF data sets have proved that accuracy, sensitivity, and specificity of the proposed system are comparable or superior to state-of-the-art methods.


2017 ◽  
Author(s):  
Alexander Rakhlin

AbstractThis document represents a brief account of ongoing project for Diabetic Retinopathy Detection (DRD) through integration of state-of the art Deep Learning methods. We make use of deep Convolutional Neural Networks (CNNs), which have proven revolutionary in multiple fields of computer vision including medical imaging, and we bring their power to the diagnosis of eye fundus images. For training our models we used publicly available Kaggle data set. For testing we used portion of Kaggle data withheld from training and Messidor-2 reference standard. Neither withheld Kaggle images, nor Messidor-2 were used for training. For Messidor-2 we achieved sensitivity 99%, specificity 71%, and AUC 0.97. These results close to recent state-of-the-art models trained on much larger data sets and surpass average results of diabetic retinopathy screening when performed by trained optometrists. With continuous development of our Deep Learning models we expect to further increase the accuracy of the method and expand it to cataract and glaucoma diagnostics.


Author(s):  
Huiwu Luo ◽  
Yuan Yan Tang ◽  
Robert P. Biuk-Aghai ◽  
Xu Yang ◽  
Lina Yang ◽  
...  

In this paper, we propose a novel scheme to learn high-level representative features and conduct classification for hyperspectral image (HSI) data in an automatic fashion. The proposed method is a collaboration of a wavelet-based extended morphological profile (WTEMP) and a deep autoencoder (DAE) (“WTEMP-DAE”), with the aim of exploiting the discriminative capability of DAE when using WTEMP features as the input. Each part of WTEMP-DAE is ingenious and contributes to the final classification performance. Specifically, in WTEMP-DAE, the spatial information is extracted from the WTEMP, which is then joined with the wavelet denoised spectral information to form the spectral-spatial description of HSI data. The obtained features are fed into DAE as the original input, where the good weights and bias of the network are initialized through unsupervised pre-training. Once the pre-training is completed, the reconstruction layers are discarded and a logistic regression (LR) layer is added to the top of the network to perform supervised fine-tuning and classification. Experimental results on two real HSI data sets demonstrate that the proposed strategy improves classification performance in comparison with other state-of-the-art hand-crafted feature extractors and their combinations.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yifei Xu ◽  
Zhuming Zhou ◽  
Xiao Li ◽  
Nuo Zhang ◽  
Meizi Zhang ◽  
...  

Diabetic retinopathy is one of the main causes of blindness in human eyes, and lesion segmentation is an important basic work for the diagnosis of diabetic retinopathy. Due to the small lesion areas scattered in fundus images, it is laborious to segment the lesion of diabetic retinopathy effectively with the existing U-Net model. In this paper, we proposed a new lesion segmentation model named FFU-Net (Feature Fusion U-Net) that enhances U-Net from the following points. Firstly, the pooling layer in the network is replaced with a convolutional layer to reduce spatial loss of the fundus image. Then, we integrate multiscale feature fusion (MSFF) block into the encoders which helps the network to learn multiscale features efficiently and enrich the information carried with skip connection and lower-resolution decoder by fusing contextual channel attention (CCA) models. Finally, in order to solve the problems of data imbalance and misclassification, we present a Balanced Focal Loss function. In the experiments on benchmark dataset IDRID, we make an ablation study to verify the effectiveness of each component and compare FFU-Net against several state-of-the-art models. In comparison with baseline U-Net, FFU-Net improves the segmentation performance by 11.97%, 10.68%, and 5.79% on metrics SEN, IOU, and DICE, respectively. The quantitative and qualitative results demonstrate the superiority of our FFU-Net in the task of lesion segmentation of diabetic retinopathy.


Author(s):  
K Sobha Rani

Collaborative filtering suffers from the problems of data sparsity and cold start, which dramatically degrade recommendation performance. To help resolve these issues, we propose TrustSVD, a trust-based matrix factorization technique. By analyzing the social trust data from four real-world data sets, we conclude that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Hence, we build on top of a state-of-the-art recommendation algorithm SVD++ which inherently involves the explicit and implicit influence of rated items, by further incorporating both the explicit and implicit influence of trusted users on the prediction of items for an active user. To our knowledge, the work reported is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that our approach TrustSVD achieves better accuracy than other ten counterparts, and can better handle the concerned issues.


2021 ◽  
Vol 11 (15) ◽  
pp. 6975
Author(s):  
Tao Zhang ◽  
Lun He ◽  
Xudong Li ◽  
Guoqing Feng

Lipreading aims to recognize sentences being spoken by a talking face. In recent years, the lipreading method has achieved a high level of accuracy on large datasets and made breakthrough progress. However, lipreading is still far from being solved, and existing methods tend to have high error rates on the wild data and have the defects of disappearing training gradient and slow convergence. To overcome these problems, we proposed an efficient end-to-end sentence-level lipreading model, using an encoder based on a 3D convolutional network, ResNet50, Temporal Convolutional Network (TCN), and a CTC objective function as the decoder. More importantly, the proposed architecture incorporates TCN as a feature learner to decode feature. It can partly eliminate the defects of RNN (LSTM, GRU) gradient disappearance and insufficient performance, and this yields notable performance improvement as well as faster convergence. Experiments show that the training and convergence speed are 50% faster than the state-of-the-art method, and improved accuracy by 2.4% on the GRID dataset.


2021 ◽  
Vol 29 ◽  
pp. 115-124
Author(s):  
Xinlu Wang ◽  
Ahmed A.F. Saif ◽  
Dayou Liu ◽  
Yungang Zhu ◽  
Jon Atli Benediktsson

BACKGROUND: DNA sequence alignment is one of the most fundamental and important operation to identify which gene family may contain this sequence, pattern matching for DNA sequence has been a fundamental issue in biomedical engineering, biotechnology and health informatics. OBJECTIVE: To solve this problem, this study proposes an optimal multi pattern matching with wildcards for DNA sequence. METHODS: This proposed method packs the patterns and a sliding window of texts, and the window slides along the given packed text, matching against stored packed patterns. RESULTS: Three data sets are used to test the performance of the proposed algorithm, and the algorithm was seen to be more efficient than the competitors because its operation is close to machine language. CONCLUSIONS: Theoretical analysis and experimental results both demonstrate that the proposed method outperforms the state-of-the-art methods and is especially effective for the DNA sequence.


2021 ◽  
Vol 11 (6) ◽  
pp. 2511
Author(s):  
Julian Hatwell ◽  
Mohamed Medhat Gaber ◽  
R. Muhammad Atif Azad

This research presents Gradient Boosted Tree High Importance Path Snippets (gbt-HIPS), a novel, heuristic method for explaining gradient boosted tree (GBT) classification models by extracting a single classification rule (CR) from the ensemble of decision trees that make up the GBT model. This CR contains the most statistically important boundary values of the input space as antecedent terms. The CR represents a hyper-rectangle of the input space inside which the GBT model is, very reliably, classifying all instances with the same class label as the explanandum instance. In a benchmark test using nine data sets and five competing state-of-the-art methods, gbt-HIPS offered the best trade-off between coverage (0.16–0.75) and precision (0.85–0.98). Unlike competing methods, gbt-HIPS is also demonstrably guarded against under- and over-fitting. A further distinguishing feature of our method is that, unlike much prior work, our explanations also provide counterfactual detail in accordance with widely accepted recommendations for what makes a good explanation.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 168
Author(s):  
Isabel Torres-Cuevas ◽  
Iván Millán ◽  
Miguel Asensi ◽  
Máximo Vento ◽  
Camille Oger ◽  
...  

The loss of redox homeostasis induced by hyperglycemia is an early sign and key factor in the development of diabetic retinopathy. Due to the high level of long-chain polyunsaturated fatty acids, diabetic retina is highly susceptible to lipid peroxidation, source of pathophysiological alterations in diabetic retinopathy. Previous studies have shown that pterostilbene, a natural antioxidant polyphenol, is an effective therapy against diabetic retinopathy development, although its protective effects on lipid peroxidation are not well known. Plasma, urine and retinas from diabetic rabbits, control and diabetic rabbits treated daily with pterostilbene were analyzed. Lipid peroxidation was evaluated through the determination of derivatives from arachidonic, adrenic and docosahexaenoic acids by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Diabetes increased lipid peroxidation in retina, plasma and urine samples and pterostilbene treatment restored control values, showing its ability to prevent early and main alterations in the development of diabetic retinopathy. Through our study, we are able to propose the use of a derivative of adrenic acid, 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF, for the first time, as a suitable biomarker of diabetic retinopathy in plasmas or urine.


Sign in / Sign up

Export Citation Format

Share Document