scholarly journals Edge Models with the CAD Software: Creating a New Context for Mathematics in Elementary School

Author(s):  
Felicitas Pielsticker ◽  
Ingo Witzke ◽  
Amelie Vogler

AbstractDigital media have become increasingly important in recent years and can offer new possibilities for mathematics education in elementary schools. From our point of view, geometry and geometric objects seem to be suitable for the use of computer-aided design software in mathematics classes. Based on the example of Tinkercad, the use of CAD software — a new and challenging context in elementary schools — is discussed within the approach of domains of subjective experience and the Toulmin model. An empirical study examined the influence of Tinkercad on fourth-graders’ development of a model of a geometric solid and related reasoning processes in mathematics classes.

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 685
Author(s):  
Manuel Prado-Velasco ◽  
Rafael Ortiz-Marín

The emergence of computer-aided design (CAD) has propelled the evolution of the sheet metal engineering field. Sheet metal design software tools include parameters associated to the part’s forming process during the pattern drawing calculation. Current methods avoid the calculation of a first pattern drawing of the flattened part’s neutral surface, independent of the forming process, leading to several methodological limitations. The study evaluates the reliability of the Computer Extended Descriptive Geometry (CeDG) approach to surpass those limitations. Three study cases that cover a significative range of sheet metal systems are defined and the associated solid models and patterns’ drawings are computed through Geogebra-based CeDG and two selected CAD tools (Solid Edge 2020, LogiTRACE v14), with the aim of comparing their reliability and accuracy. Our results pointed to several methodological lacks in LogiTRACE and Solid Edge that prevented to solve properly several study cases. In opposition, the novel CeDG approach for the computer parametric modeling of 3D geometric systems overcame those limitations so that all models could be built and flattened with accuracy and without methodological limitations. As additional conclusion, the success of CeDG suggests the necessity to recover the relevance of descriptive geometry as a key core in graphic engineering.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1986
Author(s):  
Andreas Koenig ◽  
Julius Schmidtke ◽  
Leonie Schmohl ◽  
Sibylle Schneider-Feyrer ◽  
Martin Rosentritt ◽  
...  

The performance of dental resin-based composites (RBCs) heavily depends on the characteristic properties of the individual filler fraction. As specific information regarding the properties of the filler fraction is often missing, the current study aims to characterize the filler fractions of several contemporary computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs from a material science point of view. The filler fractions of seven commercially available CAD/CAM RBCs featuring different translucency variants were analysed using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Micro-X-ray Computed Tomography (µXCT), Thermogravimetric Analysis (TG) and X-ray Diffractometry (XRD). All CAD/CAM RBCs investigated included midifill hybrid type filler fractions, and the size of the individual particles was clearly larger than the individual specifications of the manufacturer. The fillers in Shofu Block HC featured a sphericity of ≈0.8, while it was <0.7 in all other RBCs. All RBCs featured only X-ray amorphous phases. However, in Lava Ultimate, zircon crystals with low crystallinity were detected. In some CAD/CAM RBCs, inhomogeneities (X-ray opaque fillers or pores) with a size <80 µm were identified, but the effects were minor in relation to the total volume (<0.01 vol.%). The characteristic parameters of the filler fraction in RBCs are essential for the interpretation of the individual material’s mechanical and optical properties.


2016 ◽  
Vol 823 ◽  
pp. 396-401
Author(s):  
Adrian Cuzmoş ◽  
Dorian Nedelcu ◽  
Constantin Viorel Câmpian ◽  
Cristian Fănică ◽  
Ana Maria Budai

The paper presents a method developed and used by the CCHAPT researchers for the graphic plotting of the index tests results for hydraulic turbines, the comparison of the efficiency curves resulted from testing to those obtained by the model transposition [1] i.e. the determination and comparison of the existing combinatory cam with that obtained from tests.The method presented in the paper was born from the need for processing and presenting the results of index tests within the shortest delay and eliminating the errors that might occur in the results plotting.


Author(s):  
Luis de Casenave ◽  
José E. Lugo

The proficiency of Computer Aided Design (CAD) to save, communicate and render realistic virtual prototypes allows for easier communication and review of proposed design decisions via design reviews. However, the use of virtual prototypes is limited by the realism of the human computer interface. This paper builds on previous research investigating if increasing the realism of input and output interactions between subjects and virtual prototypes will affect user’s ability to analyze an assembly for errors. For this end, two experiments were conducted which asked participants to perform design reviews on assembly models and identify errors in the assembly. The first experiment tested virtual prototype output display factors through subject point of view movement and virtual prototype rotation. The second experiment tested human input factors using different controller setups. It is expected the more realistic virtual prototype rendering and controller input experience will result in more accurate design reviews.


Author(s):  
Xun Xu

One of the key activities in any product design process is to develop a geometric model of the product from the conceptual ideas, which can then be augmented with further engineering information pertaining to the application area. For example, the geometric model of a design may be developed to include material and manufacturing information that can later be used in computer-aided process planning and manufacturing (CAPP/CAM) activities. A geometric model is also a must for any engineering analysis, such as finite elopement analysis (FEA). In mathematic terms, geometric modelling is concerned with defining geometric objects using computational geometry, which is often, represented through computer software or rather a geometric modelling kernel. Geometry may be defined with the help of a wire-frame model, surface model, or solid model. Geometric modelling has now become an integral part of any computer-aided design (CAD) system. In this chapter, various geometric modelling approaches, such as wire-frame, surface, and solid modelling will be discussed. Basic computational geometric methods for defining simple entities such as curves, surfaces, and solids are given. Concepts of parametric, variational, history-based, and history-free CAD systems are explained. These topics are discussed in this opening chapter because (a) CAD was the very first computer-aided technologies developed and (b) its related techniques and methods have been pervasive in the other related subjects like computer-aided manufacturing. This chapter only discusses CAD systems from the application point of view; CAD data formats and data exchange issues are covered in the second chapter.


2020 ◽  
Vol 10 (24) ◽  
pp. 9029
Author(s):  
Bokyeong Lee ◽  
Hyeonggil Choi ◽  
Byongwang Min ◽  
Dong-Eun Lee

In this study, by applying the developed formwork automation design software to three target structures, we reviewed the applicability of the formwork automation design software for the aluminum formwork. To apply the formwork automation design software, we built an aluminum formwork library based on the conversion of two-dimensional (2D) computer-aided design (CAD) data to three-dimensional building information modeling data for all the components of the aluminum formwork. The results of the automated formwork layout on the target structures using the formwork automation design software confirmed that the wall and deck members were laid out by the set algorithm according to the formwork size and direction. However, because of the limited functionality of the software, the level of completion of the formwork layout was found to be lower than that of the manual formwork layout based on 2D CAD data. The currently developed software is based on a simple algorithm, but has a drawback in that the automated layout is limited to only some of its members. Therefore, additional research should be conducted on the development of advanced software through the diversification of the algorithm, automation of preprocessing of the mesh, and analysis of the relationships of all the members comprising the formwork.


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0226322
Author(s):  
Nelson Massanobu Sakaguti ◽  
Mário Marques Fernandes ◽  
Luiz Eugênio Nigro Mazzilli ◽  
Juan Antonio Cobo Plana ◽  
Fernanda Capurucho Horta Bouchardet ◽  
...  

2018 ◽  
Vol 90 (4) ◽  
pp. 652-658
Author(s):  
Péter Deák

Purpose The purpose of this paper is to make an analytical comparison of two vertical tail models from a structural point of view. Design/methodology/approach The original vertical tail design of PZL-106BT aircraft was used for Computer aided design (CAD) modeling and for creating the finite element model. Findings The nodal displacements, Von-Mises stresses and Buckling factors for two vertical tail models have been found using the finite element method. The idea of a possible Multidisciplinary concept assessment and design (MDCAD) concept was presented. Practical implications The used software analogy introduces an idea of having an automated calculation procedure within the framework of MDCAD. Originality/value The aircraft used for calculation had undergone a modification in its vertical tail length, as there was an urgent need to calculate for the plane’s manufacturer, PZL Warszawa – Okecie.


2005 ◽  
Vol 127 (12) ◽  
pp. 32-34
Author(s):  
Jean Thilmany

This article discusses that how mechanical engineers will pair their already-familiar computer-aided design software with not-so-familiar three-dimensional (3D) displays for true 3D design. This is in accordance to a number of vendors' intent on supplying the newfangled computer monitors, within the next two decades. Although some of the devices are already on the market, affordable 3D monitors and displays seem to be more than a decade away, according to one university professor at work on such a project. Widespread adoption is still hindered by factors such as cost, software availability, and lack of a mouse-like device needed to interact with what’s on screen. Over the past 25 years, mechanical engineers have witnessed evolutionary change in design methods-from pen and paper to two-dimensional software and now to 3-D computer-aided design. While software makers have stepped up with sleeker and faster modeling capabilities, visualization lags. Computer users two decades out will carry out all business, web surfing, and gaming on 3-D displays. That next generation may well find the very idea of 2-D monitors to be as dated as record albums seem to teenagers today.


Sign in / Sign up

Export Citation Format

Share Document