scholarly journals Vascular Regulation of Hematopoietic Stem Cell Homeostasis, Regeneration, and Aging

Author(s):  
Pradeep Ramalingam ◽  
Jason M. Butler ◽  
Michael G. Poulos

Abstract Purpose of Review Hematopoietic stem cells (HSCs) sit at the top of the hierarchy that meets the daily burden of blood production. HSC maintenance relies on extrinsic cues from the bone marrow (BM) microenvironment to balance stem cell self-renewal and cell fate decisions. In this brief review, we will highlight the studies and model systems that define the centralized role of BM vascular endothelium in modulating HSC activity in health and stress. Recent Findings The BM microenvironment is composed of a diverse array of intimately associated vascular and perivascular cell types. Recent dynamic imaging studies, coupled with single-cell RNA sequencing (scRNA-seq) and functional readouts, have advanced our understanding of the HSC-supportive cell types and their cooperative mechanisms that govern stem cell fate during homeostasis, regeneration, and aging. These findings have established complex and discrete vascular microenvironments within the BM that express overlapping and unique paracrine signals that modulate HSC fate. Summary Understanding the spatial and reciprocal HSC-niche interactions and the molecular mechanisms that govern HSC activity in the BM vascular microenvironment will be integral in developing therapies aimed at ameliorating hematological disease and supporting healthy hematopoietic output.

Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2407
Author(s):  
Ruicen He ◽  
Arthur Dantas ◽  
Karl Riabowol

Acetylation of histones is a key epigenetic modification involved in transcriptional regulation. The addition of acetyl groups to histone tails generally reduces histone-DNA interactions in the nucleosome leading to increased accessibility for transcription factors and core transcriptional machinery to bind their target sequences. There are approximately 30 histone acetyltransferases and their corresponding complexes, each of which affect the expression of a subset of genes. Because cell identity is determined by gene expression profile, it is unsurprising that the HATs responsible for inducing expression of these genes play a crucial role in determining cell fate. Here, we explore the role of HATs in the maintenance and differentiation of various stem cell types. Several HAT complexes have been characterized to play an important role in activating genes that allow stem cells to self-renew. Knockdown or loss of their activity leads to reduced expression and or differentiation while particular HATs drive differentiation towards specific cell fates. In this study we review functions of the HAT complexes active in pluripotent stem cells, hematopoietic stem cells, muscle satellite cells, mesenchymal stem cells, neural stem cells, and cancer stem cells.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 255 ◽  
Author(s):  
Miruna Mihaela Micheu ◽  
Alina Ioana Scarlatescu ◽  
Alexandru Scafa-Udriste ◽  
Maria Dorobantu

Despite significant progress in treating ischemic cardiac disease and succeeding heart failure, there is still an unmet need to develop effective therapeutic strategies given the persistent high-mortality rate. Advances in stem cell biology hold great promise for regenerative medicine, particularly for cardiac regeneration. Various cell types have been used both in preclinical and clinical studies to repair the injured heart, either directly or indirectly. Transplanted cells may act in an autocrine and/or paracrine manner to improve the myocyte survival and migration of remote and/or resident stem cells to the site of injury. Still, the molecular mechanisms regulating cardiac protection and repair are poorly understood. Stem cell fate is directed by multifaceted interactions between genetic, epigenetic, transcriptional, and post-transcriptional mechanisms. Decoding stem cells’ “panomic” data would provide a comprehensive picture of the underlying mechanisms, resulting in patient-tailored therapy. This review offers a critical analysis of omics data in relation to stem cell survival and differentiation. Additionally, the emerging role of stem cell-derived exosomes as “cell-free” therapy is debated. Last but not least, we discuss the challenges to retrieve and analyze the huge amount of publicly available omics data.


2019 ◽  
Vol 97 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Laura P.M.H. de Rooij ◽  
Derek C.H. Chan ◽  
Ava Keyvani Chahi ◽  
Kristin J. Hope

Normal hematopoiesis is sustained through a carefully orchestrated balance between hematopoietic stem cell (HSC) self-renewal and differentiation. The functional importance of this axis is underscored by the severity of disease phenotypes initiated by abnormal HSC function, including myelodysplastic syndromes and hematopoietic malignancies. Major advances in the understanding of transcriptional regulation of primitive hematopoietic cells have been achieved; however, the post-transcriptional regulatory layer that may impinge on their behavior remains underexplored by comparison. Key players at this level include RNA-binding proteins (RBPs), which execute precise and highly coordinated control of gene expression through modulation of RNA properties that include its splicing, polyadenylation, localization, degradation, or translation. With the recent identification of RBPs having essential roles in regulating proliferation and cell fate decisions in other systems, there has been an increasing appreciation of the importance of post-transcriptional control at the stem cell level. Here we discuss our current understanding of RBP-driven post-transcriptional regulation in HSCs, its implications for normal, perturbed, and malignant hematopoiesis, and the most recent technological innovations aimed at RBP–RNA network characterization at the systems level. Emerging evidence highlights RBP-driven control as an underappreciated feature of primitive hematopoiesis, the greater understanding of which has important clinical implications.


Blood ◽  
2011 ◽  
Vol 118 (9) ◽  
pp. 2420-2429 ◽  
Author(s):  
Christoph Schaniel ◽  
Dario Sirabella ◽  
Jiajing Qiu ◽  
Xiaohong Niu ◽  
Ihor R. Lemischka ◽  
...  

Abstract The role of Wnt signaling in hematopoietic stem cell fate decisions remains controversial. We elected to dysregulate Wnt signaling from the perspective of the stem cell niche by expressing the pan Wnt inhibitor, Wnt inhibitory factor 1 (Wif1), specifically in osteoblasts. Here we report that osteoblastic Wif1 overexpression disrupts stem cell quiescence, leading to a loss of self-renewal potential. Primitive stem and progenitor populations were more proliferative and elevated in bone marrow and spleen, manifesting an impaired ability to maintain a self-renewing stem cell pool. Exhaustion of the stem cell pool was apparent only in the context of systemic stress by chemotherapy or transplantation of wild-type stem cells into irradiated Wif1 hosts. Paradoxically this is mediated, at least in part, by an autocrine induction of canonical Wnt signaling in stem cells on sequestration of Wnts in the environment. Additional signaling pathways are dysregulated in this model, primarily activated Sonic Hedgehog signaling in stem cells as a result of Wif1-induced osteoblastic expression of Sonic Hedgehog. We find that dysregulation of the stem cell niche by overexpression of an individual component impacts other unanticipated regulatory pathways in a combinatorial manner, ultimately disrupting niche mediated stem cell fate decisions.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Christian Kosan ◽  
Maren Godmann

All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.


2021 ◽  
Author(s):  
Aidan E Gilchrist ◽  
Julio F. Serrano ◽  
Mai T. Ngo ◽  
Zona Hrnjak ◽  
Sanha Kim ◽  
...  

Biomaterial platforms are an integral part of stem cell biomanufacturing protocols. The collective biophysical, biochemical, and cellular cues of the stem cell niche microenvironment play an important role in regulating stem cell fate decisions. Three-dimensional (3D) culture of stem cells within biomaterials provides a route to present biophysical and biochemical stimuli such as cell-matrix interactions and cell-cell interactions via secreted biomolecules. Herein, we describe a maleimide-functionalized gelatin (GelMAL) hydrogel that can be crosslinked via thiol-Michael addition click reaction for the encapsulation of sensitive stem cell populations. The maleimide functional units along the gelatin backbone enables gelation via the addition of a dithiol crosslinker without requiring external stimuli (e.g., UV light, photoinitiator), reducing reactive oxide species generation. Additionally, the versatility of crosslinker selection enables easy insertion of thiol-containing bioactive or bioinert motifs. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) were encapsulated in GelMAL, with mechanical properties tuned to mimic the in vivo bone marrow niche. We report insertion of a cleavable peptide crosslinker that can be degraded by the proteolytic action of SortaseA, a mammalian-inert enzyme. Notably, SortaseA exposure preserves stem cell surface markers, an essential metric of hematopoietic activity used in immunophenotyping. This novel GelMAL system enables a route to producing artificial stem cell niches with tunable biophysical properties with intrinsic cell-interaction motifs and orthogonal addition of bioactive crosslinks.


2020 ◽  
Author(s):  
Shubham Haribhau Mehatre ◽  
Irene Mariam Roy ◽  
Atreyi Biswas ◽  
Devila Prit ◽  
Sarah Schouteden ◽  
...  

AbstractOutside-in integrin signaling regulates cell fate decisions in a variety of cell types, including hematopoietic stem cells (HSCs). Our earlier published studies showed that interruption of Periostin (POSTN) and Integrin-αv (ITGAV) interaction induces faster proliferation in HSCs with developmental stage dependent functional effects. Here, we examined the role of POSTN-ITGAV axis in lympho-hematopoietic activity in spleen that hosts rare population of HSCs, the functional regulation of which is not clearly known. Vav-iCre mediated deletion of Itgav in hematopoietic system led to higher proliferation rates, resulting in increased frequency of primitive HSCs in adult spleen. However, in vitro CFU-C assays demonstrated a poorer differentiation potential following Itgav deletion. This also led to a decrease in the white pulp area with a significant decline in the B-cell numbers. Systemic deletion of its ligand, POSTN, phenocopied the effects noted in Vav-Itgav−/− mice. Histological examination of Postn deficient spleen also showed increase in the spleen trabecular areas. Surprisingly, these were the myofibroblasts of the trabecular and capsular areas that expressed high levels of POSTN within the spleen tissue. In addition, vascular smooth muscle cells also expressed POSTN. Through CFU-S12 assays, we showed that hematopoietic support potential of stroma in Postn deficient splenic hematopoietic niche was defective. Overall, we demonstrate that POSTN-ITGAV interaction plays important role in spleen lympho-hematopoiesis.


2021 ◽  
Author(s):  
Haoli Ying ◽  
Ruolang Pan ◽  
Ye Chen

Mesenchymal stem cells (MSCs) are progenitors of connective tissues, which have emerged as important tools for tissue engineering owing to their differentiation potential in various cell types. The therapeutic utility of MSCs hinges upon our understanding of the molecular mechanisms involved in cellular fate decisions. Thus, the elucidation of the regulation of MSC differentiation has attracted increasing attention in recent years. A variety of external cues contribute to the process of MSC differentiation, including chemical, physical, and biological factors. Among the multiple factors that are known to affect cell fate decisions, the epigenetic regulation of MSC differentiation has become a research hotspot. In this chapter, we summarize recent progress in the determination of the effects of epigenetic modification on the multilineage differentiation of MSCs.


2020 ◽  
Author(s):  
Isamar Pastrana-Otero ◽  
Sayani Majumdar ◽  
Aidan E. Gilchrist ◽  
Brittney L. Gorman ◽  
Brendan A. C. Harley ◽  
...  

Biomaterial microarrays are being developed to facilitate identifying the extrinsic cues that elicit stem cell fate decisions to self-renew, differentiate and remain quiescent. Raman microspectroscopy, often combined with multivariate analysis techniques such as partial least square-discriminant analysis (PLS-DA), could enable the non-invasive identification of stem cell fate decisions made in response to extrinsic cues presented at specific locations on these microarrays. Because existing biomaterial microarrays are not compatible with Raman microspectroscopy, here, we develop an inexpensive substrate that is compatible with both single-cell Raman spectroscopy and the chemistries that are often used for biomaterial microarray fabrication. Standard deposition techniques were used to fabricate a custom Raman-compatible substrate that supports microarray construction. We validated that spectra from living cells on functionalized polyacrylamide (PA) gels attached to the custom Raman-compatible substrate are comparable to spectra acquired from a more expensive commercially available substrate. We also showed that the spectra acquired from individual living cells on functionalized PA gels attached to our custom substrates were of sufficient quality to enable accurate identification of cell phenotypes using PLS-DA models of the cell spectra. We demonstrated this by using cells from laboratory lines (CHO and transfected CHO cells) as well as adult stem cells that were freshly isolated from mice (long-term and short-term hematopoietic stem cells). The custom Ramancompatible substrate reported herein may be used as an inexpensive substrate for constructing biomaterial microarrays that enable the use of Raman microspectroscopy to non-invasively identify the fate decisions of stem cells in response to extrinsic cues.


2021 ◽  
Vol 22 (18) ◽  
pp. 9667
Author(s):  
Geoffrey Brown

In principle, an oncogene is a cellular gene (proto-oncogene) that is dysfunctional, due to mutation and fusion with another gene or overexpression. Generally, oncogenes are viewed as deregulating cell proliferation or suppressing apoptosis in driving cancer. The cancer stem cell theory states that most, if not all, cancers are a hierarchy of cells that arises from a transformed tissue-specific stem cell. These normal counterparts generate various cell types of a tissue, which adds a new dimension to how oncogenes might lead to the anarchic behavior of cancer cells. It is that stem cells, such as hematopoietic stem cells, replenish mature cell types to meet the demands of an organism. Some oncogenes appear to deregulate this homeostatic process by restricting leukemia stem cells to a single cell lineage. This review examines whether cancer is a legacy of stem cells that lose their inherent versatility, the extent that proto-oncogenes play a role in cell lineage determination, and the role that epigenetic events play in regulating cell fate and tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document