scholarly journals Blue-LED-excitable NIR-II luminescent lanthanide-doped SrS nanoprobes for ratiometric thermal sensing

Author(s):  
Jiaojiao Wei ◽  
Youyu Liu ◽  
Meiran Zhang ◽  
Wei Zheng ◽  
Ping Huang ◽  
...  
Keyword(s):  
Blue Led ◽  
2018 ◽  
pp. 73-79
Author(s):  
A.L. Kosakovskyi ◽  
◽  
S.O. Gulyar ◽  
I.A. Kosakivska ◽  
N.P. Grushetska ◽  
...  

2012 ◽  
Vol 27 (7) ◽  
pp. 716-720
Author(s):  
Bing XU ◽  
Jun-Liang ZHAO ◽  
Jian-Ming ZHANG ◽  
Xiao-Wei SUN ◽  
Fu-Wei ZHUGE ◽  
...  

2020 ◽  
Vol 11 (47) ◽  
pp. 7497-7505
Author(s):  
Jiannan Cheng ◽  
Kai Tu ◽  
Enjie He ◽  
Jinying Wang ◽  
Lifen Zhang ◽  
...  

A novel strategy for preparing block copolymers with semifluorinated alternating copolymers as macroinitiators was established by photocontrolled iodine-mediated RDRP under irradiation with blue LED light at room temperature.


2021 ◽  
Author(s):  
Wenjing Li ◽  
Shun Li ◽  
Lihua Luo ◽  
Yichen Ge ◽  
Jiaqi Xu ◽  
...  

The catalyst-free oxidative cleavage of (Z)-triaryl-substituted alkenes bearing pyridyl motif with ambient air under irradiation of blue LED at room temperature has been developed. The reaction was facile and scalable,...


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 472
Author(s):  
Yeong-Ji Oh ◽  
Ye-Rin Park ◽  
Jungil Hong ◽  
Do-Yup Lee

The light-emitting diode (LED) has been widely used in the food industry, and its application has been focused on microbial sterilization, specifically using blue-LED. The investigation has been recently extended to characterize the biotic and abiotic (photodynamic) effects of different wavelengths. Here, we investigated LED effects on kimchi fermentation. Kimchi broths were treated with three different colored-LEDs (red, green, and blue) or kept in the dark as a control. Multiomics was applied to evaluate the microbial taxonomic composition using 16S rRNA gene amplicon sequencing, and the metabolomic profiles were determined using liquid chromatography–Orbitrap mass spectrometry. Cell viability was tested to determine the potential cytotoxicity of the LED-treated kimchi broths. First, the amplicon sequencing data showed substantial changes in taxonomic composition at the family and genus levels according to incubation (initial condition vs. all other groups). The differences among the treated groups (red-LED (RLED), green-LED (GLED), blue-LED (BLED), and dark condition) were marginal. The relative abundance of Weissella was decreased in all treated groups compared to that of the initial condition, which coincided with the decreased composition of Lactobacillus. Compositional changes were relatively high in the GLED group. Subsequent metabolomic analysis indicated a unique metabolic phenotype instigated by different LED treatments, which led to the identification of the LED treatment-specific and common compounds (e.g., luteolin, 6-methylquinoline, 2-hydroxycinnamic acid, and 9-HODE). These results indicate that different LED wavelengths induce characteristic alterations in the microbial composition and metabolomic content, which may have applications in food processing and storage with the aim of improving nutritional quality and the safety of food.


Author(s):  
Chiaki Tsutsumi-Arai ◽  
Yuki Arai ◽  
Chika Terada-Ito ◽  
Takahiro Imamura ◽  
Seiko Tatehara ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Liao ◽  
Lan Yang

AbstractTemperature is one of the most fundamental physical properties to characterize various physical, chemical, and biological processes. Even a slight change in temperature could have an impact on the status or dynamics of a system. Thus, there is a great need for high-precision and large-dynamic-range temperature measurements. Conventional temperature sensors encounter difficulties in high-precision thermal sensing on the submicron scale. Recently, optical whispering-gallery mode (WGM) sensors have shown promise for many sensing applications, such as thermal sensing, magnetic detection, and biosensing. However, despite their superior sensitivity, the conventional sensing method for WGM resonators relies on tracking the changes in a single mode, which limits the dynamic range constrained by the laser source that has to be fine-tuned in a timely manner to follow the selected mode during the measurement. Moreover, we cannot derive the actual temperature from the spectrum directly but rather derive a relative temperature change. Here, we demonstrate an optical WGM barcode technique involving simultaneous monitoring of the patterns of multiple modes that can provide a direct temperature readout from the spectrum. The measurement relies on the patterns of multiple modes in the WGM spectrum instead of the changes of a particular mode. It can provide us with more information than the single-mode spectrum, such as the precise measurement of actual temperatures. Leveraging the high sensitivity of WGMs and eliminating the need to monitor particular modes, this work lays the foundation for developing a high-performance temperature sensor with not only superior sensitivity but also a broad dynamic range.


RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 26415-26420
Author(s):  
Yue Yao ◽  
Si-Wei Zhang ◽  
Zijian Liu ◽  
Chun-Yun Wang ◽  
Ping Liu ◽  
...  

A Bi3+-doped Cs2SnCl6 exhibits photoluminescence at around 456 nm and a photoluminescence quantum yield of 31%. The blue LED based on the Bi3+-doped Cs2SnCl6 phosphor exhibits a long life of 120 hours and a CIE color coordinates of (0.14, 0.11).


2021 ◽  
Vol 23 (2) ◽  
pp. 774-779
Author(s):  
Pengfei Niu ◽  
Jingya Yang ◽  
Yong Yuan ◽  
Yongxin Zhang ◽  
Chenxing Zhou ◽  
...  

A redox-neutral decarboxylative radical–radical coupling reaction of heteroaryl methylamines with NHPI esters has been developed by employing a copper complex as a photocatalyst with blue LED irradiation.


Sign in / Sign up

Export Citation Format

Share Document