scholarly journals Machine learning for digital try-on: Challenges and progress

Author(s):  
Junbang Liang ◽  
Ming C. Lin

Abstract Digital try-on systems for e-commerce have the potential to change people's lives and provide notable economic benefits. However, their development is limited by practical constraints, such as accurate sizing of the body and realism of demonstrations. We enumerate three open challenges remaining for a complete and easy-to-use try-on system that recent advances in machine learning make increasingly tractable. For each, we describe the problem, introduce state-of-the-art approaches, and provide future directions.

2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


2020 ◽  
Vol 12 (20) ◽  
pp. 3338
Author(s):  
Rami Al-Ruzouq ◽  
Mohamed Barakat A. Gibril ◽  
Abdallah Shanableh ◽  
Abubakir Kais ◽  
Osman Hamed ◽  
...  

Remote sensing technologies and machine learning (ML) algorithms play an increasingly important role in accurate detection and monitoring of oil spill slicks, assisting scientists in forecasting their trajectories, developing clean-up plans, taking timely and urgent actions, and applying effective treatments to contain and alleviate adverse effects. Review and analysis of different sources of remotely sensed data and various components of ML classification systems for oil spill detection and monitoring are presented in this study. More than 100 publications in the field of oil spill remote sensing, published in the past 10 years, are reviewed in this paper. The first part of this review discusses the strengths and weaknesses of different sources of remotely sensed data used for oil spill detection. Necessary preprocessing and preparation of data for developing classification models are then highlighted. Feature extraction, feature selection, and widely used handcrafted features for oil spill detection are subsequently introduced and analyzed. The second part of this review explains the use and capabilities of different classical and developed state-of-the-art ML techniques for oil spill detection. Finally, an in-depth discussion on limitations, open challenges, considerations of oil spill classification systems using remote sensing, and state-of-the-art ML algorithms are highlighted along with conclusions and insights into future directions.


2018 ◽  
Vol 22 (03) ◽  
pp. 307-322 ◽  
Author(s):  
Leon Lenchik ◽  
Robert Boutin

AbstractAs populations continue to age worldwide, the impact of sarcopenia on public health will continue to grow. The clinically relevant and increasingly common diagnosis of sarcopenia is at the confluence of three tectonic shifts in medicine: opportunistic imaging, precision medicine, and machine learning. This review focuses on the state-of-the-art imaging of sarcopenia and provides context for such imaging by discussing the epidemiology, pathophysiology, consequences, and future directions in the field of sarcopenia.


2020 ◽  
pp. 1-10
Author(s):  
Roser Morante ◽  
Eduardo Blanco

Abstract Negation is a complex linguistic phenomenon present in all human languages. It can be seen as an operator that transforms an expression into another expression whose meaning is in some way opposed to the original expression. In this article, we survey previous work on negation with an emphasis on computational approaches. We start defining negation and two important concepts: scope and focus of negation. Then, we survey work in natural language processing that considers negation primarily as a means to improve the results in some task. We also provide information about corpora containing negation annotations in English and other languages, which usually include a combination of annotations of negation cues, scopes, foci, and negated events. We continue the survey with a description of automated approaches to process negation, ranging from early rule-based systems to systems built with traditional machine learning and neural networks. Finally, we conclude with some reflections on current progress and future directions.


2021 ◽  
Vol 71 ◽  
pp. 1183-1317
Author(s):  
Aditya Mogadala ◽  
Marimuthu Kalimuthu ◽  
Dietrich Klakow

Interest in Artificial Intelligence (AI) and its applications has seen unprecedented growth in the last few years. This success can be partly attributed to the advancements made in the sub-fields of AI such as machine learning, computer vision, and natural language processing. Much of the growth in these fields has been made possible with deep learning, a sub-area of machine learning that uses artificial neural networks. This has created significant interest in the integration of vision and language. In this survey, we focus on ten prominent tasks that integrate language and vision by discussing their problem formulation, methods, existing datasets, evaluation measures, and compare the results obtained with corresponding state-of-the-art methods. Our efforts go beyond earlier surveys which are either task-specific or concentrate only on one type of visual content, i.e., image or video. Furthermore, we also provide some potential future directions in this field of research with an anticipation that this survey stimulates innovative thoughts and ideas to address the existing challenges and build new applications.


Author(s):  
Ravinder Kumar

This article presents a critical review of extensive research on automatic fingerprint matching over a decade. In particular, the focus is made on the non-minutiae-based features and machine-learning-based fingerprint matching approaches. This article highlights the problems pertaining to the minutiae-based features and presents a detailed review on the state-of-the-art of non-minutiae-based features. This article also presents an overview of the state-of-the-art fingerprint benchmark databases, along with the open problems and the future directions for the fingerprint matching.


Author(s):  
Tarik Alafif ◽  
Abdul Muneeim Tehame ◽  
Saleh Bajaba ◽  
Ahmed Barnawi ◽  
Saad Zia

With many successful stories, machine learning (ML) and deep learning (DL) have been widely used in our everyday lives in a number of ways. They have also been instrumental in tackling the outbreak of Coronavirus (COVID-19), which has been happening around the world. The SARS-CoV-2 virus-induced COVID-19 epidemic has spread rapidly across the world, leading to international outbreaks. The COVID-19 fight to curb the spread of the disease involves most states, companies, and scientific research institutions. In this research, we look at the Artificial Intelligence (AI)-based ML and DL methods for COVID-19 diagnosis and treatment. Furthermore, in the battle against COVID-19, we summarize the AI-based ML and DL methods and the available datasets, tools, and performance. This survey offers a detailed overview of the existing state-of-the-art methodologies for ML and DL researchers and the wider health community with descriptions of how ML and DL and data can improve the status of COVID-19, and more studies in order to avoid the outbreak of COVID-19. Details of challenges and future directions are also provided.


2021 ◽  
Vol 70 ◽  
pp. 245-317
Author(s):  
Nadia Burkart ◽  
Marco F. Huber

Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or finance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.


Sign in / Sign up

Export Citation Format

Share Document