Microbial dysbiosis together with nutrient imbalance cause the replant problem of upper six flue-cured tobacco in Central Henan

Author(s):  
Dean Rao ◽  
Panyang Liu ◽  
Luyi Zou ◽  
Yue Teng ◽  
Hongyan Yu
1958 ◽  
Vol 36 (1) ◽  
pp. 125-134 ◽  
Author(s):  
W. B. Mountain ◽  
H. R. Boyce

Peach production in Ontario is largely restricted to the Niagara Peninsula and Essex County, areas that are separated by some 200 miles but have a similar climate. The peach replant problem has been much more serious in Essex County than in the Niagara Peninsula. A survey of mature peach orchards showed that Pratylenchus penetrans (Cobb, 1917) Sher & Allen, 1953, is considerably more prevalent in peach soils in Essex County than in the Niagara Peninsula. In both areas, orchards that had a previous history of the replant problem had three to four times greater soil population of P. penetrans than those with no such history. Soils of finer texture were shown to limit the populations of P. penetrans, and the relatively low numbers of this nematode in the Niagara Peninsula appear to result from the influence of the finer soils prevailing in that region. The effect of different soil-particle sizes on the build-up of P. penetrans may explain the distribution of the peach replant problem in Ontario.


2021 ◽  
Vol 22 (3) ◽  
pp. 1416
Author(s):  
Riccardo Castagnoli ◽  
Francesca Pala ◽  
Marita Bosticardo ◽  
Amelia Licari ◽  
Ottavia M. Delmonte ◽  
...  

Inborn errors of immunity (IEI) are a group of disorders that are mostly caused by genetic mutations affecting immune host defense and immune regulation. Although IEI present with a wide spectrum of clinical features, in about one third of them various degrees of gastrointestinal (GI) involvement have been described and for some IEI the GI manifestations represent the main and peculiar clinical feature. The microbiome plays critical roles in the education and function of the host’s innate and adaptive immune system, and imbalances in microbiota-immunity interactions can contribute to intestinal pathogenesis. Microbial dysbiosis combined to the impairment of immunosurveillance and immune dysfunction in IEI, may favor mucosal permeability and lead to inflammation. Here we review how immune homeostasis between commensals and the host is established in the gut, and how these mechanisms can be disrupted in the context of primary immunodeficiencies. Additionally, we highlight key aspects of the first studies on gut microbiome in patients affected by IEI and discuss how gut microbiome could be harnessed as a therapeutic approach in these diseases.


Author(s):  
Robert Thänert ◽  
Eric C Keen ◽  
Gautam Dantas ◽  
Barbara B Warner ◽  
Phillip I Tarr

Abstract Decades of research have failed to define the pathophysiology of necrotizing enterocolitis (NEC), a devastating pediatric gastrointestinal disorder of preterm infants. However, recent evidence suggests that host-microbiota interactions, in which microbial dysbiosis is followed by loss of barrier integrity, inflammation, and necrosis, are central to NEC development. Thus, greater knowledge of the preterm infant microbiome could accelerate attempts to diagnose, treat, and prevent NEC. Here, we summarize clinical characteristics of and risk factors for NEC, the structure of the pre-event NEC microbiome, how this community interfaces with host immunology, and microbiome-based approaches that might prevent or lessen the severity of NEC in this very vulnerable population.


2021 ◽  
Vol 14 ◽  
pp. 175628482110356
Author(s):  
Lina Zhang ◽  
Huanqin Han ◽  
Xuan Li ◽  
Caozhen Chen ◽  
Xiaobing Xie ◽  
...  

Background and aims: Currently, there are no definitive therapies for coronavirus disease 2019 (COVID-19). Gut microbial dysbiosis has been proved to be associated with COVID-19 severity and probiotics is an adjunctive therapy for COIVD-19. However, the potential benefit of probiotics in COVID-19 has not been studied. We aimed to assess the relationship of probiotics use with clinical outcomes in patients with COVID-19. Methods: We conducted a propensity-score matched retrospective cohort study of adult patients with COVID-19. Eligible patients received either probiotics plus standard care (probiotics group) or standard care alone (non-probiotics group). The primary outcome was the clinical improvement rate, which was compared among propensity-score matched groups and in the unmatched cohort. Secondary outcomes included the duration of viral shedding, fever, and hospital stay. Results: Among the propensity-score matched groups, probiotics use was related to clinical improvement rates (log-rank p = 0.028). This relationship was driven primarily by a shorter (days) time to clinical improvement [difference, −3 (−4 to −1), p = 0.022], reduction in duration of fever [−1.0 (−2.0 to 0.0), p = 0.025], viral shedding [−3 (−6 to −1), p < 0.001], and hospital stay [−3 (−5 to −1), p = 0.009]. Using the Cox model with time-varying exposure, use of probiotics remained independently related to better clinical improvement rate in the unmatched cohort. Conclusion: Our study suggested that probiotics use was related to improved clinical outcomes in patients with COVID-19. Further studies are required to validate the effect of probiotics in combating the COVID-19 pandemic.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3907
Author(s):  
Sergio Pérez-Burillo ◽  
Beatriz Navajas-Porras ◽  
Alicia López-Maldonado ◽  
Daniel Hinojosa-Nogueira ◽  
Silvia Pastoriza ◽  
...  

Green tea can influence the gut microbiota by either stimulating the growth of specific species or by hindering the development of detrimental ones. At the same time, gut bacteria can metabolize green tea compounds and produce smaller bioactive molecules. Accordingly, green tea benefits could be due to beneficial bacteria or to microbial bioactive metabolites. Therefore, the gut microbiota is likely to act as middle man for, at least, some of the green tea benefits on health. Many health promoting effects of green tea seems to be related to the inter-relation between green tea and gut microbiota. Green tea has proven to be able to correct the microbial dysbiosis that appears during several conditions such as obesity or cancer. On the other hand, tea compounds influence the growth of bacterial species involved in inflammatory processes such as the release of LPS or the modulation of IL production; thus, influencing the development of different chronic diseases. There are many studies trying to link either green tea or green tea phenolic compounds to health benefits via gut microbiota. In this review, we tried to summarize the most recent research in the area.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wumei Xu ◽  
Fengyun Wu ◽  
Haoji Wang ◽  
Linyan Zhao ◽  
Xue Liu ◽  
...  

AbstractNegative plant-soil feedbacks lead to the poor growth of Panax notoginseng (Sanqi), a well-known herb in Asia and has been used worldwide, under continuous cropping. However, the key soil parameters causing the replant problem are still unclear. Here we conducted a field experiment after 5-year continuous cropping. Sanqi seedlings were cultivated in 7 plots (1.5 m × 2 m), which were randomly assigned along a survival gradient. In total, 13 important soil parameters were measured to understand their relationship with Sanqi’s survival. Pearson correlation analysis showed that 6 soil parameters, including phosphatase, urease, cellulase, bacteria/fungi ratio, available N, and pH, were all correlated with Sanqi’s survival rate (P < 0.05). Principal component analysis (PCA) indicated that they explained 61% of the variances based on the first component, with soil pH being closely correlated with other parameters affecting Sanqi’s survival. The optimum pH for Sanqi growth is about 6.5, but the mean soil pH in the study area is 5.27 (4.86–5.68), therefore it is possible to ameliorate the poor growth of Sanqi by increasing soil pH. This study may also help to reduce the replant problem of other crops under continuous cropping since it is widespread in agricultural production.


Sign in / Sign up

Export Citation Format

Share Document