Porous hydroxyapatite scaffold produced using Musa paradisiaca template and its in vitro bioactivity

Author(s):  
Ahmad Fadli ◽  
Prihartini Widiyanti ◽  
Deni Noviana ◽  
Agung Prabowo ◽  
Adi Mulyadi ◽  
...  
2021 ◽  
Author(s):  
Li Deng ◽  
Wei Qing ◽  
Lijuan Huang ◽  
Cong Liu ◽  
Jiajun Zheng ◽  
...  

Abstract Hydroxyapatite is a commonly used scaffold material for bone tissue engineering. However, the osteogenic mechanism of hydroxyapatite scaffolds remains unclear. Recently, we have prepared a hydroxyapatite scaffolds with microchannels and porous structures (HAG) which have good osteogenic effects in vitro and in vivo. In present study, we explained the mechanism of HAG scaffolds promoted the osteogenic differentiation from the perspective of miRNA differential expression. We used microarray assays to analyze the expression profiles of miRNAs from the osteogenic differentiation of hPMSCs with or without HAG; 16 miRNAs were upregulated and 29 miRNAs were downregulated between the two types of cells. And overexpression the differential miRNAs could promote the osteogenic differentiation of hPMSCs. Additionally, gene ontology analysis, pathway analysis, and miRNA-mRNA-network built were performed to reveal that the differentially expressed miRNAs participate in multiple biological processes, including cell metabolic, cell junction, cell development, differentiation, and signal transduction, among others. Furthermore, we found that these differentially expressed miRNAs connect osteogenic differentiation to processes such as axon guidance, MAPK, and TGF-beta signaling pathway. This is the first study to identify and characterize differentiational miRNAs derived from HAG-hPMSC cells.


Materials ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 33 ◽  
Author(s):  
Manabu Tanaka ◽  
Hisao Haniu ◽  
Takayuki Kamanaka ◽  
Takashi Takizawa ◽  
Atsushi Sobajima ◽  
...  

2012 ◽  
Vol 45 ◽  
pp. S60
Author(s):  
Francesca Gervaso ◽  
Sanosh Kunjalukkal Padmanabhan ◽  
Francesca Scalera ◽  
Marina Carrozzo ◽  
Antonio Licciulli ◽  
...  

Author(s):  
Waras Nurcholis ◽  
Edy Djauhari Purwakusumah ◽  
Mono Rahardjo ◽  
Latifah K. Darusman

Temulawak (Curcuma  xanthorrhizaRoxb.) belongs to the family Zingiberaceae, has been empirically used as herbal medicines. The research was aimed to evaluate three promising lines of Temulawak based on their high bioactive contents (xanthorrhizol and curcuminoid) and its in vitro bioactivity (antioxidant and toxicity), and to obtain information on agrobiophysic environmental condition which produced high bioactive compounds. The xanthorrhizol and curcuminoid contents were measured by HPLC. In vitro antioxidant and toxicity were determined by DPPH (1,1-diphenyl-2-picryl-hydrazyl) method and BSLT (Brine Shrimp Lethality Test). The result showed that promising line A produced the highest yield of bioactive and bioactivity, i.e. 0.157 and 0.056 g plant-1of xanthorrizol and curcuminoid respectively. The IC50 of antioxidant activity was 65.09 mg L-1and LC50of toxicity was 69.05 mg L-1. In this study, Cipenjo had the best temulawak performance than two other locations. According to the agrobiophysic parameters, Cipenjo environmental condition was suitable for temulawak cultivation with temperature 28-34 ºC, rainfall ± 223.97 mm year-1 and sandy clay soil. Keywords: antioxidant, curcuminoid, promising lines, temulawak, xanthorrhizol


Author(s):  
Jaroslava Švarc-Gajić ◽  
Víctor Cerdà ◽  
Cristina Delerue-Matos ◽  
Pavle Mašković ◽  
Sabrina Clavijo ◽  
...  

Author(s):  
Stefano Dall'Acqua ◽  
Shyam Sharan Shrestha ◽  
Irene Ferrarese ◽  
Stefania Sut ◽  
Gokhan Zengin ◽  
...  

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Shaher Bano ◽  
Memoona Akhtar ◽  
Muhammad Yasir ◽  
Muhammad Salman Maqbool ◽  
Akbar Niaz ◽  
...  

Biomedical implants are the need of this era due to the increase in number of accidents and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone cancer, etc., are increasing globally. Mesoporous bioactive glass nanoparticles (MBGNs) are used in biomedical devices due to their osteointegration and bioactive properties. In this study, silver (Ag)- and strontium (Sr)-doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were prepared by a modified Stöber process. In this method, Ag+ and Sr2+ were co-substituted in pure MBGNs to harvest the antibacterial properties of Ag ions, as well as pro-osteogenic potential of Sr2 ions. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and in-vitro bioactivity was studied. Scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) confirmed the doping of Sr and Ag in MBGNs. SEM and EDX analysis confirmed the spherical morphology and typical composition of MBGNs, respectively. The Ag-Sr MBGNs showed a strong antibacterial effect against Staphylococcus carnosus and Escherichia coli bacteria determined via turbidity and disc diffusion method. Moreover, the synthesized Ag-Sr MBGNs develop apatite-like crystals upon immersion in simulated body fluid (SBF), which suggested that the addition of Sr improved in vitro bioactivity. The Ag-Sr MBGNs synthesized in this study can be used for the preparation of scaffolds or as a filler material in the composite coatings for bone tissue engineering.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 618
Author(s):  
Tzu-Yu Peng ◽  
Pei-Yun Tsai ◽  
May-Show Chen ◽  
Yuichi Mine ◽  
Shan-Hua Wu ◽  
...  

Mesoporous bioactive glass (MBG) has a high specific surface area, promoting the reaction area, thereby improving the bioactivity; thus, MBG is currently gaining popularity in the biomaterial field. Spray pyrolysis (SP) is a one-pot process that has the advantages of shorter process time and better particle bioactivity, therefore, MBG was prepared by SP process with various polyethylene glycol (PEG, molecular weight ranged from 2000–12,000) and acid (HCl and CH3COOH) additions. In vitro bioactivity and mesoporous properties of the so-obtained MBG were investigated. The experimental results showed that all the MBG exhibited amorphous and mesoporous structure. Increasing the molecular weight of PEG can improve the mesoporous structure and bioactivity of MBG. Whereas optimized MBG was prepared with suitable concentration of PEG and CH3COOH. In the present work, MBG synthesized via spray pyrolysis by adding 5 g of PEG with a molecular weight of 12,000 and 50 mL of CH3COOH exhibited the best in vitro bioactivity and mesoporous structure.


Sign in / Sign up

Export Citation Format

Share Document