scholarly journals Application of lung microphysiological systems to COVID-19 modeling and drug discovery: a review

Author(s):  
Argus M. Sun ◽  
Tyler Hoffman ◽  
Bao Q. Luu ◽  
Nureddin Ashammakhi ◽  
Song Li

AbstractThere is a pressing need for effective therapeutics for coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The process of drug development is a costly and meticulously paced process, where progress is often hindered by the failure of initially promising leads. To aid this challenge, in vitro human microphysiological systems need to be refined and adapted for mechanistic studies and drug screening, thereby saving valuable time and resources during a pandemic crisis. The SARS-CoV-2 virus attacks the lung, an organ where the unique three-dimensional (3D) structure of its functional units is critical for proper respiratory function. The in vitro lung models essentially recapitulate the distinct tissue structure and the dynamic mechanical and biological interactions between different cell types. Current model systems include Transwell, organoid and organ-on-a-chip or microphysiological systems (MPSs). We review models that have direct relevance toward modeling the pathology of COVID-19, including the processes of inflammation, edema, coagulation, as well as lung immune function. We also consider the practical issues that may influence the design and fabrication of MPS. The role of lung MPS is addressed in the context of multi-organ models, and it is discussed how high-throughput screening and artificial intelligence can be integrated with lung MPS to accelerate drug development for COVID-19 and other infectious diseases.

Author(s):  
Ana S. Serras ◽  
Joana S. Rodrigues ◽  
Madalena Cipriano ◽  
Armanda V. Rodrigues ◽  
Nuno G. Oliveira ◽  
...  

The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ligui Zhou ◽  
Caiqin Zhang ◽  
Yongbin Zhang ◽  
Changhong Shi

Complex heterogeneity is an important characteristic in the development of prostate cancer (PCa), which further leads to the failure of known therapeutic options. PCa research has been hampered by the current in vitro model systems that cannot fully reflect the biological characteristics and clinical diversity of PCa. The tumor organoid model in three-dimensional culture retains the heterogeneity of primary tumor tissues in vitro well and enables high-throughput screening and genome editing. Therefore, the establishment of a PCa organoid model that recapitulates the diverse heterogeneity observed in clinical settings is of great significance for the study of PCa. In this review, we summarize the culture conditions, establishments, and limitations of PCa organoids and further review their application for the study of pathogenesis, drug screening, mechanism of drug resistance, and individualized treatment for PCa. Additionally, we look forward to other potential developmental directions of PCa organoids, such as the interaction between prostate cancer tumor cells and their microenvironment, clinical individualized treatments, heterogeneous transformation model, tumor immunotherapy, and organoid models combined with liquid biopsy. Through this, we provide more effective preclinical experimental schemes using the PCa organoid model.


2021 ◽  
Vol 22 (19) ◽  
pp. 10214
Author(s):  
Sarah Kammerer

Drug-induced liver injury (DILI) is the major reason for failures in drug development and withdrawal of approved drugs from the market. Two-dimensional cultures of hepatocytes often fail to reliably predict DILI: hepatoma cell lines such as HepG2 do not reflect important primary-like hepatic properties and primary human hepatocytes (pHHs) dedifferentiate quickly in vitro and are, therefore, not suitable for long-term toxicity studies. More predictive liver in vitro models are urgently required in drug development and compound safety evaluation. This review discusses available human hepatic cell types for in vitro toxicology analysis and their usage in established and emerging three-dimensional (3D) culture systems. Generally, 3D cultures maintain or improve primary hepatic functions (including expression of drug-metabolizing enzymes) of different liver cells for several weeks of culture, thus allowing long-term and repeated-dose toxicity studies. Spheroid cultures of pHHs have been comprehensively tested, but also other cell types such as HepaRG benefit from 3D culture systems. Emerging 3D culture techniques include usage of induced pluripotent stem-cell-derived hepatocytes and primary-like upcyte cells, as well as advanced culture techniques such as microfluidic liver-on-a-chip models. In-depth characterization of existing and emerging 3D hepatocyte technologies is indispensable for successful implementation of such systems in toxicological analysis.


2020 ◽  
Vol 27 (29) ◽  
pp. 4778-4788 ◽  
Author(s):  
Victoria Heredia-Soto ◽  
Andrés Redondo ◽  
José Juan Pozo Kreilinger ◽  
Virginia Martínez-Marín ◽  
Alberto Berjón ◽  
...  

Sarcomas are tumours of mesenchymal origin, which can arise in bone or soft tissues. They are rare but frequently quite aggressive and with a poor outcome. New approaches are needed to characterise these tumours and their resistance mechanisms to current therapies, responsible for tumour recurrence and treatment failure. This review is focused on the potential of three-dimensional (3D) in vitro models, including multicellular tumour spheroids (MCTS) and organoids, and the latest data about their utility for the study on important properties for tumour development. The use of spheroids as a particularly valuable alternative for compound high throughput screening (HTS) in different areas of cancer biology is also discussed, which enables the identification of new therapeutic opportunities in commonly resistant tumours.


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Palaniselvam Kuppusamy ◽  
Dahye Kim ◽  
Ilavenil Soundharrajan ◽  
Inho Hwang ◽  
Ki Choon Choi

A co-culture system allows researchers to investigate the complex interactions between two cell types under various environments, such as those that promote differentiation and growth as well as those that mimic healthy and diseased states, in vitro. In this paper, we review the most common co-culture systems for myocytes and adipocytes. The in vitro techniques mimic the in vivo environment and are used to investigate the causal relationships between different cell lines. Here, we briefly discuss mono-culture and co-culture cell systems and their applicability to the study of communication between two or more cell types, including adipocytes and myocytes. Also, we provide details about the different types of co-culture systems and their applicability to the study of metabolic disease, drug development, and the role of secretory factors in cell signaling cascades. Therefore, this review provides details about the co-culture systems used to study the complex interactions between adipose and muscle cells in various environments, such as those that promote cell differentiation and growth and those used for drug development.


2021 ◽  
Vol 22 (3) ◽  
pp. 1203
Author(s):  
Lu Qian ◽  
Julia TCW

A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients’ CNS and serve as a platform for therapeutic development and personalized precision medicine.


Author(s):  
Lauren Marshall ◽  
Isabel Löwstedt ◽  
Paul Gatenholm ◽  
Joel Berry

The objective of this study was to create 3D engineered tissue models to accelerate identification of safe and efficacious breast cancer drug therapies. It is expected that this platform will dramatically reduce the time and costs associated with development and regulatory approval of anti-cancer therapies, currently a multi-billion dollar endeavor [1]. Existing two-dimensional (2D) in vitro and in vivo animal studies required for identification of effective cancer therapies account for much of the high costs of anti-cancer medications and health insurance premiums borne by patients, many of whom cannot afford it. An emerging paradigm in pharmaceutical drug development is the use of three-dimensional (3D) cell/biomaterial models that will accurately screen novel therapeutic compounds, repurpose existing compounds and terminate ineffective ones. In particular, identification of effective chemotherapies for breast cancer are anticipated to occur more quickly in 3D in vitro models than 2D in vitro environments and in vivo animal models, neither of which accurately mimic natural human tumor environments [2]. Moreover, these 3D models can be multi-cellular and designed with extracellular matrix (ECM) function and mechanical properties similar to that of natural in vivo cancer environments [3].


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Jose Santos ◽  
Alla A Gimbel ◽  
Athanasios Peppas ◽  
James G Truslow ◽  
Daniel Lang ◽  
...  

Microfluidic lab-on-a-chip devices are changing the way that in vitro diagnostics and drug development are conducted, based on the increased precision, miniaturization and efficiency of these systems relative to prior...


Sign in / Sign up

Export Citation Format

Share Document