scholarly journals Laser polished fused deposition poly-lactic acid objects for personalized orthopaedic application

2020 ◽  
Vol 2 (11) ◽  
Author(s):  
Yuan Chai ◽  
Xiao-Bo Chen ◽  
Donghai Zhang ◽  
Joseph Lynch ◽  
Nick Birbilis ◽  
...  

AbstractPatient-specific surgical guides are increasingly demanded. Material Extrusion (ME) is a popular 3D printing technique to fabricate personalized surgical guides. However, the ME process usually generates deleterious surface topography which is not suitable for orthopaedic emergencies. We designed and optimized parametric combinations of a laser polishing approach as post process to improve the surface quality of ME-made poly-lactic acid (PLA) objects. In this study, we investigated the contribution of processing variables to the mechanical properties and the biocompatibilities in vitro of the ME-made PLA objects. Conventional surface grinding was conducted as comparison. The results demonstrate that the ME-made PLA samples exhibit good mechanical properties and favourable biocompatibility after being post processed using laser polishing. The post laser polishing, as a powerful tool in manufacture of ME-made PLA objects, will open a new approach with a great promise in its applications in personalized and timely management of medical emergencies.

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 258 ◽  
Author(s):  
Xiaohui Song ◽  
Wei He ◽  
Huadong Qin ◽  
Shoufeng Yang ◽  
Shifeng Wen

In this work Macadamia nutshell (MS) was used as filler in fused deposition modeling (FDM) of Poly (lactic acid) (PLA) composites filaments. Composites containing MS both treated and untreated with alkali and silane were investigated by means of Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), Thermogravimetry (TG), scanning electron microscopy (SEM). The results showed that the treated MS composites had better thermal stability. Furthermore, compression tests were carried out. The PLA with 10 wt% treated MS composite was found possessing the best mechanical properties which was almost equivalent to that of the pure PLA. Finally, porous scaffolds of PLA/10 wt% treated MS were fabricated. The scaffolds exhibited various porosities in range of 30–65%, interconnected holes in size of 0.3–0.5 mm, micro pores with dimension of 0.1–1 μm and 37.92–244.46 MPa of elastic modulus. Those values indicated that the FDM of PLA/MS composites have the potential to be used as weight lighter and structural parts.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2567
Author(s):  
Madison Bardot ◽  
Michael D. Schulz

3D printing by fused deposition modelling (FDM) enables rapid prototyping and fabrication of parts with complex geometries. Unfortunately, most materials suitable for FDM 3D printing are non-degradable, petroleum-based polymers. The current ecological crisis caused by plastic waste has produced great interest in biodegradable materials for many applications, including 3D printing. Poly(lactic acid) (PLA), in particular, has been extensively investigated for FDM applications. However, most biodegradable polymers, including PLA, have insufficient mechanical properties for many applications. One approach to overcoming this challenge is to introduce additives that enhance the mechanical properties of PLA while maintaining FDM 3D printability. This review focuses on PLA-based nanocomposites with cellulose, metal-based nanoparticles, continuous fibers, carbon-based nanoparticles, or other additives. These additives impact both the physical properties and printability of the resulting nanocomposites. We also detail the optimal conditions for using these materials in FDM 3D printing. These approaches demonstrate the promise of developing nanocomposites that are both biodegradable and mechanically robust.


2021 ◽  
Vol 7 (1) ◽  
pp. 326
Author(s):  
Cyron Lego Custodio ◽  
Phoebeliza Jane M. Broñola ◽  
Sharyjel R.Cayabyab ◽  
Vivian U. Lagura ◽  
Josefina R. Celorico ◽  
...  

This study presents the physicochemical and mechanical behavior of incorporating hydroxyapatite (HAp) with polylactic acid (PLA) matrix in 3D printed PLA/HAp composite materials. Effects of powder loading to the composition, crystallinity, morphology, and mechanical properties were observed. HAp was synthesized from locally sourced nanoprecipitated calcium carbonate and served as the filler for the PLA matrix. The 0, 5, 10, and 15 wt. % HAp biocomposite filaments were formed using a twin-screw extruder. The resulting filaments were 3D printed in an Ultimaker S5 machine utilizing a fused deposition modeling technology. Successful incorporation of HAp and PLA was observed using infrared spectroscopy and X-ray diffraction (XRD). The mechanical properties of pure PLA had improved on the incorporation of 15% HAp; from 32.7 to 47.3 MPa in terms of tensile strength; and 2.3 to 3.5 GPa for stiffness. Moreover, the preliminary in vitro bioactivity test of the 3D printed PLA/HAp biocomposite samples in simulated body fluid (SBF) indicated varying weight gains and the presence of apatite species’ XRD peaks. The HAp particles embedded in the PLA matrix acted as nucleation sites for the deposition of salts and apatite species from the SBF solution


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4736 ◽  
Author(s):  
Soňa Kontárová ◽  
Radek Přikryl ◽  
Veronika Melčová ◽  
Přemysl Menčík ◽  
Matyáš Horálek ◽  
...  

This paper investigates the effect of plasticizer structure on especially the printability and mechanical and thermal properties of poly(3-hydroxybutyrate)-poly(lactic acid)-plasticizer biodegradable blends. Three plasticizers, acetyl tris(2-ethylhexyl) citrate, tris(2-ethylhexyl) citrate, and poly(ethylene glycol)bis(2-ethylhexanoate), were first checked whether they were miscible with poly(3-hydroxybutyrate)-poly(lactic acid) (PHB-PLA) blends using a kneading machine. PHB-PLA-plasticizer blends of 60-25-15 (wt.%) were then prepared using a corotating meshing twin-screw extruder, and a single screw extruder was used for filament preparation for further three-dimensional (3D) fused deposition modeling (FDM) printing. These innovative eco-friendly PHB-PLA-plasticizer blends were created with a majority of PHB, and therefore, poor mechanical properties and thermal properties of neat PHB-PLA blends were improved by adding appropriate plasticizer. The plasticizer also influences the printability of blends, which was investigated, based on our new specific printability tests developed for the optimization of printing conditions (especially printing temperature). Three-dimensional printed test samples were used for heat deflection temperature measurements and Charpy and tensile-impact tests. Plasticizer migration was also investigated. The macrostructure of 3D printed samples was observed using an optical microscope to check the printing quality and printing conditions. Tensile tests of 3D printed samples (dogbones), as well as extruded filaments, showed that measured elongation at break raised, from 21% for non-plasticized PHB-PLA reference blends to 84% for some plasticized blends in the form of filaments and from 10% (reference) to 32% for plasticized blends in the form of printed dogbones. Measurements of thermal properties (using modulated differential scanning calorimetry and oscillation rheometry) also confirmed the plasticizing effect on blends. The thermal and mechanical properties of PHB-PLA blends were improved by the addition of appropriate plasticizer. In contrast, the printability of the PHB-PLA reference seems to be slightly better than the printability of the plasticized blends.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Seung Kyun Yoon ◽  
Jin Ho Yang ◽  
Hyun Tae Lim ◽  
Young-Wook Chang ◽  
Muhammad Ayyoob ◽  
...  

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.


Author(s):  
Jipeng Guo ◽  
Chi-Hui Tsou ◽  
Yongqi Yu ◽  
Chin-San Wu ◽  
Xuemei Zhang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 776
Author(s):  
Sixiang Zhai ◽  
Qingying Liu ◽  
Yuelong Zhao ◽  
Hui Sun ◽  
Biao Yang ◽  
...  

With the depletion of petroleum energy, the possibility of prices of petroleum-based materials increasing, and increased environmental awareness, biodegradable materials as a kind of green alternative have attracted more and more research attention. In this context, poly (lactic acid) has shown a unique combination of properties such as nontoxicity, biodegradability, biocompatibility, and good workability. However, examples of its known drawbacks include poor tensile strength, low elongation at break, poor thermal properties, and low crystallization rate. Lignocellulosic materials such as lignin and cellulose have excellent biodegradability and mechanical properties. Compounding such biomass components with poly (lactic acid) is expected to prepare green composite materials with improved properties of poly (lactic acid). This paper is aimed at summarizing the research progress of modification of poly (lactic acid) with lignin and cellulose made in in recent years, with emphasis on effects of lignin and cellulose on mechanical properties, thermal stability and crystallinity on poly (lactic acid) composite materials. Development of poly (lactic acid) composite materials in this respect is forecasted.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 249
Author(s):  
Han-Seung Ko ◽  
Sangwoon Lee ◽  
Doyoung Lee ◽  
Jae Young Jho

To enhance the mechanical strength and bioactivity of poly(lactic acid) (PLA) to the level that can be used as a material for spinal implants, poly(glycolic acid) (PGA) fibers and hydroxyapatite (HA) were introduced as fillers to PLA composites. To improve the poor interface between HA and PLA, HA was grafted by PLA to form HA-g-PLA through coupling reactions, and mixed with PLA. The size of the HA particles in the PLA matrix was observed to be reduced from several micrometers to sub-micrometer by grafting PLA onto HA. The tensile and flexural strength of PLA/HA-g-PLA composites were increased compared with those of PLA/HA, apparently due to the better dispersion of HA and stronger interfacial adhesion between the HA and PLA matrix. We also examined the effects of the length and frequency of grafted PLA chains on the tensile strength of the composites. By the addition of unidirectionally aligned PGA fibers, the flexural strength of the composites was greatly improved to a level comparable with human compact bone. In the bioactivity tests, the growth of apatite on the surface was fastest and most uniform in the PLA/PGA fiber/HA-g-PLA composite.


Sign in / Sign up

Export Citation Format

Share Document