scholarly journals Improving the Network Life Time in Smart Grid Sensor Nodes by Considering Nodes Usage

2020 ◽  
Vol 1 (6) ◽  
Author(s):  
Yasaman Samadi ◽  
Midia Reshadi
2016 ◽  
Vol 12 (11) ◽  
pp. 46 ◽  
Author(s):  
Shujuan Dong ◽  
Cong Li

This paper covers a novel routing algorithm called Multi-Group based LEACH (MG-LEACH) that has been utilized the redundant deployed sensor nodes to improve the network life time. It has been suppressing the correlated data gathered by the sensor nodes by monitoring the similar event. Thus reduces not only the data transmission inside the clusters but also conserve the energy of deployed sensor nodes consequently improve the overall network lifetime. This is a simple idea that has been implemented over LEACH protocol however it is valid for almost all clustering based routing algorithms/protocols specially those variants based upon frame work of LEACH. The proposed routing algorithm has been simulated using MATLAB to verify the efficiency in enhancing network life time. A critical evaluation of routing algorithm is conducted to determine the relevance and applicability in increasing network life time. Simulation results confirmed that it has performed better than LEACH and enhanced network life time up to approximately 90%.


Author(s):  
Rajiv R Bhandari ◽  
K Rajasekhar

<p>In recent the espousal of Wireless Sensor Networks has been broadly augmented in numerous divisions. Battery operated Sensor nodes in the wireless network accomplish main task of capturing and responding to the surroundings. The lifetime of the network depends on the energy consumption of the sensor nodes. This paper contributes the survey on how the energy consumption should be managed for maximizing the life time of network and how to improve the efficiency of Network by using Cross layer architecture. The traditional MAC Layer, Network Layer &amp; Transport for WLAN having their own downsides just by modifying those we can achieve the network life time maximization goal. This paper represents analytical study for Energy efficiency by modifying Scheduling algorithm, by modifying traditional AODV routing algorithm for efficient packet transmission and by effectively using TCP for End to End Delivery of Data.</p>


Author(s):  
A. BABU KARUPPIAH ◽  
KEERTHINATH KEERTHINATH ◽  
M. KUNDRU MALAI RAJAN ◽  
K.ASHIF ISMAIL SHERIFF ◽  
S. RAJARAM

A Wireless Sensor Network (WSN) consists of many sensor nodes with low cost and power capability Based on the deployment, in the sensing coverage of a sensor node, typically more nodes are covered. A major challenge in constructing a WSN is to enhance the network life time. Nodes in a WSN are usually highly energy-constrained and expected to operate for long periods from limited on-board energy reserves. To permit this, nodes and the embedded software that they execute – must have energy-aware operation. Because of this, continued developments in energy-efficient operation are paramount, requiring major advances to be made in energy hardware, power management circuitry and energy aware algorithms znd protocols. During Intrusion Detection in sensor networks, some genuine nodes need to communicate with the Cluster Head to inform about the details of malicious nodes. For such applications in sensor networks, a large number of sensor nodes that are deployed densely in specific sensing environment share the same sensing tasks. Due to this, the individual nodes might waste their energy in sensing data that are not destined to it and as a result the drain in the energy of the node is more resulting in much reduced network life time. In this paper, a novel algorithm is developed to avoid redundancy in sensing the data thereby enhancing the life time of the network. The concept of Power Factor bit is proposed while a node communicates with the Cluster Head. The simulation results show that the network life time is greatly enhanced by the proposed method.


2020 ◽  
pp. 1440-1458
Author(s):  
Nilayam Kumar Kamila ◽  
Sunil Dhal

In recent Wireless Sensor Network environment, battery energy conservation is one of the most important focus of research. The non-maintainable wireless sensor nodes need modern innovative ideas to save energy in order to extend the network life time. Different strategy in wireless sensor routing mechanism has been implemented to establish the energy conservation phenomenon. In earlier days, the nodes are dissipating maximum energy to communicate with each other(flooding) to establish the route to destination. In the next evolution of this research area, a clustering mechanism introduced which confirms the energy saving over the flooding mechanism. Neural Network is an advanced approach for self-clustering mechanism and when applied on wireless sensor network infrastructure, it reduces the energy consumption required for clustering. Neural network is a powerful concept with complex algorithms and capable to provide clustering solutions based on the wireless sensor network nodes properties. With the implementation of Neural Network on Wireless Sensor Network resolves the issues of high energy consumption required for network clustering. The authors propose a self-silence wireless sensor network model where sensor nodes change the sensing and transmitting mechanism by making self-silent in order to conserve the energy. This concept is simulated in neural network based wireless sensor network infrastructure of routing methodology and the authors observe that it extends the network life time. The mathematical analysis and simulation study shows the improved performance over the existing related neural network based wireless sensor routing protocols. Furthermore, the performance & related model parameters data set analysis provides the respective dependent relation information.


2021 ◽  
Vol 10 (6) ◽  
pp. 3353-3360
Author(s):  
Aso Ahmed Majeed ◽  
Baban Ahmed Mahmood ◽  
Ahmed Chalak Shakir

The research domain for wireless sensor networks (WSN) has been extensively conducted due to innovative technologies and research directions that have come up addressing the usability of WSN under various schemes. This domain permits dependable tracking of a diversity of environments for both military and civil applications. The key management mechanism is a primary protocol for keeping the privacy and confidentiality of the data transmitted among different sensor nodes in WSNs. Since node's size is small; they are intrinsically limited by inadequate resources such as battery life-time and memory capacity. The proposed secure and energy saving protocol (SESP) for wireless sensor networks) has a significant impact on the overall network life-time and energy dissipation. To encrypt sent messsages, the SESP uses the public-key cryptography’s concept. It depends on sensor nodes' identities (IDs) to prevent the messages repeated; making security goals- authentication, confidentiality, integrity, availability, and freshness to be achieved. Finally, simulation results show that the proposed approach produced better energy consumption and network life-time compared to LEACH protocol; sensors are dead after 900 rounds in the proposed SESP protocol. While, in the low-energy adaptive clustering hierarchy (LEACH) scheme, the sensors are dead after 750 rounds.


2017 ◽  
Vol 4 (4) ◽  
pp. 82-100 ◽  
Author(s):  
Nilayam Kumar Kamila ◽  
Sunil Dhal

In recent Wireless Sensor Network environment, battery energy conservation is one of the most important focus of research. The non-maintainable wireless sensor nodes need modern innovative ideas to save energy in order to extend the network life time. Different strategy in wireless sensor routing mechanism has been implemented to establish the energy conservation phenomenon. In earlier days, the nodes are dissipating maximum energy to communicate with each other(flooding) to establish the route to destination. In the next evolution of this research area, a clustering mechanism introduced which confirms the energy saving over the flooding mechanism. Neural Network is an advanced approach for self-clustering mechanism and when applied on wireless sensor network infrastructure, it reduces the energy consumption required for clustering. Neural network is a powerful concept with complex algorithms and capable to provide clustering solutions based on the wireless sensor network nodes properties. With the implementation of Neural Network on Wireless Sensor Network resolves the issues of high energy consumption required for network clustering. The authors propose a self-silence wireless sensor network model where sensor nodes change the sensing and transmitting mechanism by making self-silent in order to conserve the energy. This concept is simulated in neural network based wireless sensor network infrastructure of routing methodology and the authors observe that it extends the network life time. The mathematical analysis and simulation study shows the improved performance over the existing related neural network based wireless sensor routing protocols. Furthermore, the performance & related model parameters data set analysis provides the respective dependent relation information.


Author(s):  
K Pavan Kumar Reddy Et.al

In wireless sensor networks (WSNs), energy constraint of node is the major issue, as the sensor may be deployed in the area where energy backup or quick replacements may not be available. In such cases, preserving the node energy and prolonging the network life time play crucial role in wireless sensor networks. Similarly, sensor nodes are highly vulnerable to attacks, attackers can easily tamper the sensor node and compromise it. Thus to overcome above stated two problems, the proposed work ensures shortest path routing, which ensures network life time of sensor nodes and the trust based routing, which avoids node compromise attacks. The proposed shortest path routing algorithms takes route through multi-hop nodes to corresponding sink. The shortest path based on the geographical routing strategy chooses the nodes nearest to the routing node and sink node. The novel routing framework proposed in this work considered shortest path with trust based routes. The node's energy is considered to taking reliable node on the routing path, which ensure the packet delivery and avoids any node failure due to less energy. The node's trust value is evaluated with three type, which ensure that the paths created are more reliable


Author(s):  
Rajiv R Bhandari ◽  
K Rajasekhar

<p>In recent the espousal of Wireless Sensor Networks has been broadly augmented in numerous divisions. Battery operated Sensor nodes in the wireless network accomplish main task of capturing and responding to the surroundings. The lifetime of the network depends on the energy consumption of the sensor nodes. This paper contributes the survey on how the energy consumption should be managed for maximizing the life time of network and how to improve the efficiency of Network by using Cross layer architecture. The traditional MAC Layer, Network Layer &amp; Transport for WLAN having their own downsides just by modifying those we can achieve the network life time maximization goal. This paper represents analytical study for Energy efficiency by modifying Scheduling algorithm, by modifying traditional AODV routing algorithm for efficient packet transmission and by effectively using TCP for End to End Delivery of Data.</p>


Sign in / Sign up

Export Citation Format

Share Document