scholarly journals Characterization of the microstructure, microsegregation, and phase composition of ex-situ Fe–Ni–Cr–Al–Mo–TiCp composites fabricated by three-dimensional plasma metal deposition on 10CrMo9–10 steel

2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Łukasz Rakoczy ◽  
Kevin Hoefer ◽  
Małgorzata Grudzień-Rakoczy ◽  
Bogdan Rutkowski ◽  
Marcin Goły ◽  
...  

Abstract Quaternary powder mixtures yNi–20Cr–1.5Al–xTiCp (y = 78.5, 73.5, 68.5; x = 0, 5, 10) were deposited on ferritic 10CrMo9–10 steel to form on plates ex-situ composite coatings with austenitic-based matrix. Plasma deposition was carried out with various parameters to obtain eight variants. The microstructure, chemical composition, phase constitution, phase transformation temperatures, and microhardness of the two reference TiCp-free coatings and six ex-situ composites were investigated by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, thermodynamic simulation, and Vickers microhardness measurements. All composites had an austenite matrix with lattice parameter a = 3.5891–3.6062 Å, calculated according to the Nelson–Riley extrapolation. Microstructural observations revealed irregular distribution of TiCp in the composites. Large particles generally occurred near the external surface due to the acting buoyancy effect, whereas in the interior smaller particles, with an equivalent radius around 0.2–0.6 μm, were present. Due to initial differences in the chemical composition of powder mixtures and also subsequent intensive mixing with the low-alloy steel in the liquid pool, the matrix of the composites was characterized by various chemical compositions with a dominating iron concentration. Interaction of TiCp with matrix during deposition led to the formation of nano-precipitates of M23C6 carbides at the interfaces. Based on the ThermoCalc simulation, the highest solidus and liquidus temperatures of the matrix were calculated to be for the composite fabricated by deposition of 73.5Ni–20Cr–1.5Al–5TiCp powder mixture at I = 130 A. The mean microhardness of the TiCp-free coatings was in the range 138–146 μHV0.1, whereas composites had hardnesses at least 50% higher, depending on the initial content of TiCp.

2021 ◽  
Vol 922 (2) ◽  
pp. 256
Author(s):  
Giulia Perotti ◽  
Henning O. Sørensen ◽  
Henning Haack ◽  
Anja C. Andersen ◽  
Dario Ferreira Sanchez ◽  
...  

Abstract Protoplanetary disks are dust- and gas-rich structures surrounding protostars. Depending on the distance from the protostar, this dust is thermally processed to different degrees and accreted to form bodies of varying chemical compositions. The primordial accretion processes occurring in the early protoplanetary disk such as chondrule formation and metal segregation are not well understood. One way to constrain them is to study the morphology and composition of forsteritic grains from the matrix of carbonaceous chondrites. Here, we present high-resolution ptychographic X-ray nanotomography and multimodal chemical microtomography (X-ray diffraction and X-ray fluorescence) to reveal the early history of forsteritic grains extracted from the matrix of the Murchison CM2.5 chondrite. The 3D electron density maps revealed, at unprecedented resolution (64 nm), spherical inclusions containing Fe–Ni, very little silica-rich glass and void caps (i.e., volumes where the electron density is consistent with conditions close to vacuum) trapped in forsterite. The presence of the voids along with the overall composition, petrological textures, and shrinkage calculations is consistent with the grains experiencing one or more heating events with peak temperatures close to the melting point of forsterite (∼2100 K), and subsequently cooled and contracted, in agreement with chondrule-forming conditions.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5236
Author(s):  
Maxime Balestrat ◽  
Abhijeet Lale ◽  
André Vinícius Andrade Bezerra ◽  
Vanessa Proust ◽  
Eranezhuth Wasan Awin ◽  
...  

The pyrolysis (1000 °C) of a liquid poly(vinylmethyl-co-methyl)silazane modified by tetrakis(dimethylamido)titanium in flowing ammonia, nitrogen and argon followed by the annealing (1000–1800 °C) of as-pyrolyzed ceramic powders have been investigated in detail. We first provide a comprehensive mechanistic study of the polymer-to-ceramic conversion based on TG experiments coupled with in-situ mass spectrometry and ex-situ solid-state NMR and FTIR spectroscopies of both the chemically modified polymer and the pyrolysis intermediates. The pyrolysis leads to X-ray amorphous materials with chemical bonding and ceramic yields controlled by the nature of the atmosphere. Then, the structural evolution of the amorphous network of ammonia-, nitrogen- and argon-treated ceramics has been studied above 1000 °C under nitrogen and argon by X-ray diffraction and electron microscopy. HRTEM images coupled with XRD confirm the formation of nanocomposites after annealing at 1400 °C. Their unique nanostructural feature appears to be the result of both the molecular origin of the materials and the nature of the atmosphere used during pyrolysis. Samples are composed of an amorphous Si-based ceramic matrix in which TiNxCy nanocrystals (x + y = 1) are homogeneously formed “in situ” in the matrix during the process and evolve toward fully crystallized compounds as TiN/Si3N4, TiNxCy (x + y = 1)/SiC and TiC/SiC nanocomposites after annealing to 1800 °C as a function of the atmosphere.


2018 ◽  
Vol 788 ◽  
pp. 108-113
Author(s):  
Anna Trubaca-Boginska ◽  
Andris Actins ◽  
Ruta Švinka ◽  
Visvaldis Švinka

Determining the quantitative composition of clay samples with X-ray fluorescent spectrometry is complicated because of the matrix effect, in which any element can increase or decrease the analytical signals of other elements. In order to predict the properties of clays, it is essential to know their precise chemical composition. Therefore, using the standard addition method was determined calibration and empirical influence coefficients, as well as the true composition of the elements. Farther, these coefficients were used to correct the matrix effect and develop a multi-parameter optimization method. It was determined that in clay samples, consisting of Si, Al, Fe, K, Mg, Ca, Na and Ti oxide formula units, the most significant contribution for matrix effect correction calculations was from the calibration coefficients. Moreover, the largest deviation from the X-ray fluorescent data and true values was determined in the MgO and Na2O cases. In this study was established, that the developed multi-parameter method can be successfully applied to determine the quantitative chemical composition of clay samples of similar compositions.


2018 ◽  
Vol 620 ◽  
pp. A98 ◽  
Author(s):  
R. Heller ◽  
R. Jacob ◽  
D. Schönberner ◽  
M. Steffen

Context. The first high-resolution X-ray spectroscopy of a planetary nebula, BD +30° 3639, opened the possibility to study plasma conditions and chemical compositions of X-ray emitting “hot” bubbles of planetary nebulae in much greater detail than before. Aims. We investigate (i) how diagnostic line ratios are influenced by the bubble’s thermal structure and chemical profile, (ii) whether the chemical composition inside the bubble of BD +30° 3639 is consistent with the hydrogen-poor composition of the stellar photosphere and wind, and (iii) whether hydrogen-rich nebular matter has already been added to the bubble of BD +30° 3639 by evaporation. Methods. We applied an analytical, one-dimensional (1D) model for wind-blown bubbles with temperature and density profiles based on self-similar solutions including thermal conduction. We also constructed heat-conduction bubbles with a chemical stratification. The X-ray emission was computed using the well-documented CHIANTI code. These bubble models are used to re-analyse the high-resolution X-ray spectrum from the hot bubble of BD +30° 3639. Results. We found that our 1D heat-conducting bubble models reproduce the observed line ratios much better than plasmas with single electron temperatures. In particular, all the temperature- and abundance-sensitive line ratios are consistent with BD +30° 3639 X-ray observations for (i) an intervening column density of neutral hydrogen, NH = 0.20-0.10+0.05 × 1022cm−2, (ii) a characteristic bubble X-ray temperature of TX = 1.8 ± 0.1 MK together with (iii) a very high neon mass fraction of about 0.05, virtually as high as that of oxygen. For lower values of NH, we cannot exclude the possibility that the hot bubble of BD +30° 3639 contains a small amount of “evaporated” (or mixed) hydrogen-rich nebular matter. Given the possible range of NH, the fraction of evaporated hydrogen-rich matter cannot exceed 3% of the bubble mass. Conclusions. The diffuse X-ray emission from BD +30° 3639 can be well explained by models of wind-blown bubbles with thermal conduction and a chemical composition equal to that of the hydrogen-poor and carbon-, oxygen-, and neon-rich stellar surface.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Mark Bediako ◽  
Eric Opoku Amankwah

The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC) and Portland limestone cement (PLC), CSIR-BRRI Pozzomix, Dangote OPC, and Diamond PLC. The chemical compositions were analyzed with X-Ray Fluorescence (XRF) spectrometer. Student’st-test was used to test the significance of the variation in chemical composition between standard literature values and each of the commercial cement brands. Analysis of variance (ANOVA) was also used to establish the extent of variations between chemical compositions and brand name of the all commercial Portland cement brands. Student’st-test results showed that there were no significant differences between standard chemical composition values and that of commercial Portland cement. The ANOVA results also indicated that each brand of commercial Portland cement varies in terms of chemical composition; however, the specific brands of cement had no significant differences. The study recommended that using any brand of cement in Ghana was good for any construction works be it concrete or mortar formation.


1989 ◽  
Vol 4 (2) ◽  
pp. 66-69 ◽  
Author(s):  
Leroy Alexander ◽  
Harold P. Klug

AbstractThe mathematical relationships are developed which are pertinent to the quantitative analysis of powder mixtures for the case of diffraction from the surface of a flat powder specimen. These formulas relate the diffracted intensity to the absorptive properties of the sample. Three important cases are treated: (1) Mixture of n components; absorbing powder of the unknown equal to that of the matrix; concentration proportional to intensity. Direct analysis is permitted. (2) Binary mixture; absorbing powder of the unknown not equal to that of the diluent; concentration not proportional to intensity. Direct analysis is possible by means of calibration curves prepared from synthetic mixtures. (3) Mixture of n components; absorbing power of the unknown not equal to that of the matrix; general case. Analysis is accomplished by the addition of an internal standard. Concentration is proportional to the ratio of the intensity of a selected reflection from the unknown to the intensity of a reflection from the internal standard.


2012 ◽  
Vol 1475 ◽  
Author(s):  
Rosemary A. Holmes ◽  
Abbie N. Jones ◽  
Lorraine McDermott ◽  
Barry Marsden

ABSTRACTCurrent energy demands and future energy needs are a growing industry which at present attracts a large amount of research and investment of which nuclear energy is an integral part. Eight new nuclear stations are proposed to be developed in the UK over the next ten years to meet this demand. In order for nuclear energy to sustain growth and development, nuclear decommissioning of first and second generation power stations needs to be addressed in the U.K. and worldwide. Presently the UK has 36 graphite moderated reactors as a result of the UK military and civil programs, which over the next twenty years will close. This will result in ∼99’000 tonnes of irradiated graphite waste for which no current national decommissioning strategy exists. The main issues associated with this waste are the large volume and activation products associated. By far the greatest inventory is from 3H and 14C. An EU Euroatom FP7 Program; CARBOWASTE was established in 2008 with the aim of developing treatment and disposal options for graphite.This research is based within CARBOWASTE, the main objectives are to understand the mechanisms involved in the production, location and removal of radioisotopes from nuclear graphite. Computed X-ray Tomography (CT) will be used in order to quantify the initial porosity in conjunction with thermal treatment (ex situ) in order to eventually identify the location of 14C within the matrix of irradiated graphite, through the preferential chemically controlled oxidation of graphite. Unirradiated Pile Grade A graphite samples have been laser and manually marked in order align the samples prior to and post thermal treatment to determine the degree of porosity changes and weight loss under a range of thermal oxidation parameters.


2018 ◽  
Vol 284 ◽  
pp. 1018-1023
Author(s):  
A.V. Khandoshka ◽  
Svetlana G. Vlasova

The composition of mineral wool was selected for the research, based on the chemical composition of the raw materials, the determination of the acidity module to obtain the thermal insulation material with the best characteristics and the lowest cost of the production of basalt mineral wool. The paper deals with compositions of raw materials and selection chemical compositions of charges for production of basalt mineral wool, and the experiments of welded samples were made and tested for viscosity, surface tension, chemical analysis and x-ray analysis.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2192
Author(s):  
Xiaoshuang Li ◽  
Kai Zweiacker ◽  
Daniel Grolimund ◽  
Dario Ferreira Sanchez ◽  
Adriaan B. Spierings ◽  
...  

Laser beam-based deposition methods such as laser cladding or additive manufacturing of metals promises improved properties, performance, and reliability of the materials and therefore rely heavily on understanding the relationship between chemical composition, rapid solidification processing conditions, and resulting microstructural features. In this work, the phase formation of four Ni-Cr-Si alloys was studied as a function of cooling rate and chemical composition using a liquid droplet rapid solidification technique. Post mortem x-ray diffraction, scanning electron microscopy, and in situ synchrotron microbeam X-ray diffraction shows the present and evolution of the rapidly solidified microstructures. Furthermore, the obtained results were compared to standard laser deposition tests. In situ microbeam diffraction revealed that due to rapid cooling and an increasing amount of Cr and Si, metastable high-temperature silicides remain in the final microstructure. Due to more sluggish interface kinetics of intermetallic compounds than that of disorder solid solution, an anomalous eutectic structure becomes dominant over the regular lamellar microstructure at high cooling rates. The rapid solidification experiments produced a microstructure similar to the one generated in laser coating thus confirming that this rapid solidification test allows a rapid pre-screening of alloys suitable for laser beam-based processing techniques.


2011 ◽  
Vol 410 ◽  
pp. 156-159
Author(s):  
Mo Lin Chan ◽  
Kin Tak Lau ◽  
Tsun Tat Wong

In this study, X-ray photoelectron spectroscopy (XPS) was conducted to analyze the chemical composition between epoxy matrix and nanocomposite. This experiment revealed that a chemical bonding at an interface between the matrix and nanoclay of the composites did exist. Thus, such bonding can enhance the mechanical and thermal properties of resultant polymer composites as reported in many literatures.


Sign in / Sign up

Export Citation Format

Share Document