Development of Surface Marker System for the Observation of Microstructural Changes in Nuclear Graphite using Micro X-ray Tomography

2012 ◽  
Vol 1475 ◽  
Author(s):  
Rosemary A. Holmes ◽  
Abbie N. Jones ◽  
Lorraine McDermott ◽  
Barry Marsden

ABSTRACTCurrent energy demands and future energy needs are a growing industry which at present attracts a large amount of research and investment of which nuclear energy is an integral part. Eight new nuclear stations are proposed to be developed in the UK over the next ten years to meet this demand. In order for nuclear energy to sustain growth and development, nuclear decommissioning of first and second generation power stations needs to be addressed in the U.K. and worldwide. Presently the UK has 36 graphite moderated reactors as a result of the UK military and civil programs, which over the next twenty years will close. This will result in ∼99’000 tonnes of irradiated graphite waste for which no current national decommissioning strategy exists. The main issues associated with this waste are the large volume and activation products associated. By far the greatest inventory is from 3H and 14C. An EU Euroatom FP7 Program; CARBOWASTE was established in 2008 with the aim of developing treatment and disposal options for graphite.This research is based within CARBOWASTE, the main objectives are to understand the mechanisms involved in the production, location and removal of radioisotopes from nuclear graphite. Computed X-ray Tomography (CT) will be used in order to quantify the initial porosity in conjunction with thermal treatment (ex situ) in order to eventually identify the location of 14C within the matrix of irradiated graphite, through the preferential chemically controlled oxidation of graphite. Unirradiated Pile Grade A graphite samples have been laser and manually marked in order align the samples prior to and post thermal treatment to determine the degree of porosity changes and weight loss under a range of thermal oxidation parameters.

Author(s):  
Tatiana Grebennikova ◽  
Abbie N Jones ◽  
Clint Alan Sharrad

Irradiated graphite waste management is one of the major challenges of nuclear power-plant decommissioning throughout the world and significantly in the UK, France and Russia where over 85 reactors employed...


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5236
Author(s):  
Maxime Balestrat ◽  
Abhijeet Lale ◽  
André Vinícius Andrade Bezerra ◽  
Vanessa Proust ◽  
Eranezhuth Wasan Awin ◽  
...  

The pyrolysis (1000 °C) of a liquid poly(vinylmethyl-co-methyl)silazane modified by tetrakis(dimethylamido)titanium in flowing ammonia, nitrogen and argon followed by the annealing (1000–1800 °C) of as-pyrolyzed ceramic powders have been investigated in detail. We first provide a comprehensive mechanistic study of the polymer-to-ceramic conversion based on TG experiments coupled with in-situ mass spectrometry and ex-situ solid-state NMR and FTIR spectroscopies of both the chemically modified polymer and the pyrolysis intermediates. The pyrolysis leads to X-ray amorphous materials with chemical bonding and ceramic yields controlled by the nature of the atmosphere. Then, the structural evolution of the amorphous network of ammonia-, nitrogen- and argon-treated ceramics has been studied above 1000 °C under nitrogen and argon by X-ray diffraction and electron microscopy. HRTEM images coupled with XRD confirm the formation of nanocomposites after annealing at 1400 °C. Their unique nanostructural feature appears to be the result of both the molecular origin of the materials and the nature of the atmosphere used during pyrolysis. Samples are composed of an amorphous Si-based ceramic matrix in which TiNxCy nanocrystals (x + y = 1) are homogeneously formed “in situ” in the matrix during the process and evolve toward fully crystallized compounds as TiN/Si3N4, TiNxCy (x + y = 1)/SiC and TiC/SiC nanocomposites after annealing to 1800 °C as a function of the atmosphere.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Łukasz Rakoczy ◽  
Kevin Hoefer ◽  
Małgorzata Grudzień-Rakoczy ◽  
Bogdan Rutkowski ◽  
Marcin Goły ◽  
...  

Abstract Quaternary powder mixtures yNi–20Cr–1.5Al–xTiCp (y = 78.5, 73.5, 68.5; x = 0, 5, 10) were deposited on ferritic 10CrMo9–10 steel to form on plates ex-situ composite coatings with austenitic-based matrix. Plasma deposition was carried out with various parameters to obtain eight variants. The microstructure, chemical composition, phase constitution, phase transformation temperatures, and microhardness of the two reference TiCp-free coatings and six ex-situ composites were investigated by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, thermodynamic simulation, and Vickers microhardness measurements. All composites had an austenite matrix with lattice parameter a = 3.5891–3.6062 Å, calculated according to the Nelson–Riley extrapolation. Microstructural observations revealed irregular distribution of TiCp in the composites. Large particles generally occurred near the external surface due to the acting buoyancy effect, whereas in the interior smaller particles, with an equivalent radius around 0.2–0.6 μm, were present. Due to initial differences in the chemical composition of powder mixtures and also subsequent intensive mixing with the low-alloy steel in the liquid pool, the matrix of the composites was characterized by various chemical compositions with a dominating iron concentration. Interaction of TiCp with matrix during deposition led to the formation of nano-precipitates of M23C6 carbides at the interfaces. Based on the ThermoCalc simulation, the highest solidus and liquidus temperatures of the matrix were calculated to be for the composite fabricated by deposition of 73.5Ni–20Cr–1.5Al–5TiCp powder mixture at I = 130 A. The mean microhardness of the TiCp-free coatings was in the range 138–146 μHV0.1, whereas composites had hardnesses at least 50% higher, depending on the initial content of TiCp.


Author(s):  
H.J. Dudek

The chemical inhomogenities in modern materials such as fibers, phases and inclusions, often have diameters in the region of one micrometer. Using electron microbeam analysis for the determination of the element concentrations one has to know the smallest possible diameter of such regions for a given accuracy of the quantitative analysis.In th is paper the correction procedure for the quantitative electron microbeam analysis is extended to a spacial problem to determine the smallest possible measurements of a cylindrical particle P of high D (depth resolution) and diameter L (lateral resolution) embeded in a matrix M and which has to be analysed quantitative with the accuracy q. The mathematical accounts lead to the following form of the characteristic x-ray intens ity of the element i of a particle P embeded in the matrix M in relation to the intensity of a standard S


Author(s):  
J.Y. Laval

The exsolution of magnetite from a substituted Yttrium Iron Garnet, containing an iron excess may lead to a transitional event. This event is characterized hy the formation of a transitional zone at the center of which the magnetite nucleates (Fig.1). Since there is a contrast between the matrix and these zones and since selected area diffraction does not show any difference between those zones and the matrix in the reciprocal lattice, it is of interest to analyze the structure of the transitional zones.By using simultaneously different techniques in electron microscopy, (oscillating crystal method microdiffraction and X-ray microanalysis)one may resolve the ionic process corresponding to the transitional event and image this event subsequently by high resolution technique.


Author(s):  
C.M. Sung ◽  
K.J. Ostreicher ◽  
M.L. Huckabee ◽  
S.T. Buljan

A series of binary oxides and SiC whisker reinforced composites both having a matrix composed of an α-(Al, R)2O3 solid solution (R: rare earth) have been studied by analytical electron microscopy (AEM). The mechanical properties of the composites as well as crystal structure, composition, and defects of both second phases and the matrix were investigated. The formation of various second phases, e.g. garnet, β-Alumina, or perovskite structures in the binary Al2O3-R2O3 and the ternary Al2O3-R2O3-SiC(w) systems are discussed.Sections of the materials having thicknesses of 100 μm - 300 μm were first diamond core drilled. The discs were then polished and dimpled. The final step was ion milling with Ar+ until breakthrough occurred. Samples prepared in this manner were then analyzed using the Philips EM400T AEM. The low-Z energy dispersive X-ray spectroscopy (EDXS) data were obtained and correlated with convergent beam electron diffraction (CBED) patterns to identify phase compositions and structures. The following EDXS parameters were maintained in the analyzed areas: accelerating voltage of 120 keV, sample tilt of 12° and 20% dead time.


Author(s):  
Richard B. Mott ◽  
John J. Friel ◽  
Charles G. Waldman

X-rays are emitted from a relatively large volume in bulk samples, limiting the smallest features which are visible in X-ray maps. Beam spreading also hampers attempts to make geometric measurements of features based on their boundaries in X-ray maps. This has prompted recent interest in using low voltages, and consequently mapping L or M lines, in order to minimize the blurring of the maps.An alternative strategy draws on the extensive work in image restoration (deblurring) developed in space science and astronomy since the 1960s. A recent example is the restoration of images from the Hubble Space Telescope prior to its new optics. Extensive literature exists on the theory of image restoration. The simplest case and its correspondence with X-ray mapping parameters is shown in Figures 1 and 2.Using pixels much smaller than the X-ray volume, a small object of differing composition from the matrix generates a broad, low response. This shape corresponds to the point spread function (PSF). The observed X-ray map can be modeled as an “ideal” map, with an X-ray volume of zero, convolved with the PSF. Figure 2a shows the 1-dimensional case of a line profile across a thin layer. Figure 2b shows an idealized noise-free profile which is then convolved with the PSF to give the blurred profile of Figure 2c.


Author(s):  
M. E. Twigg ◽  
B. R. Bennett ◽  
J. R. Waterman ◽  
J. L. Davis ◽  
B. V. Shanabrook ◽  
...  

Recently, the GaSb/InAs superlattice system has received renewed attention. The interest stems from a model demonstrating that short period Ga1-xInxSb/InAs superlattices will have both a band gap less than 100 meV and high optical absorption coefficients, principal requirements for infrared detector applications. Because this superlattice system contains two species of cations and anions, it is possible to prepare either InSb-like or GaAs-like interfaces. As such, the system presents a unique opportunity to examine interfacial properties.We used molecular beam epitaxy (MBE) to prepare an extensive set of GaSb/InAs superlattices grown on an GaSb buffer, which, in turn had been grown on a (100) GaAs substrate. Through appropriate shutter sequences, the interfaces were directed to assume either an InSb-like or GaAs-like character. These superlattices were then studied with a variety of ex-situ probes such as x-ray diffraction and Raman spectroscopy. These probes confirmed that, indeed, predominantly InSb-like and GaAs-like interfaces had been achieved.


2020 ◽  
Author(s):  
Jennifer A. Rudd ◽  
Ewa Kazimierska ◽  
Louise B. Hamdy ◽  
Odin Bain ◽  
Sunyhik Ahn ◽  
...  

The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher value products. Herein, we describe the use of porous copper electrodes to catalyze the reduction of carbon dioxide into higher value products such as ethylene, ethanol and, notably, propanol. For <i>n</i>-propanol production, faradaic efficiencies reach 4.93% at -0.83 V <i>vs</i> RHE, with a geometric partial current density of -1.85 mA/cm<sup>2</sup>. We have documented the performance of the catalyst in both pristine and urea-modified foams pre- and post-electrolysis. Before electrolysis, the copper electrode consisted of a mixture of cuboctahedra and dendrites. After 35-minute electrolysis, the cuboctahedra and dendrites have undergone structural rearrangement. Changes in the interaction of urea with the catalyst surface have also been observed. These transformations were characterized <i>ex-situ</i> using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We found that alterations in the morphology, crystallinity, and surface composition of the catalyst led to the deactivation of the copper foams.


Sign in / Sign up

Export Citation Format

Share Document