Soft computing approaches for comparative prediction of ram tensile and shear strength in aluminium–stainless steel explosive cladding

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
S. Saravanan ◽  
K. Gajalakshmi
Alloy Digest ◽  
2006 ◽  
Vol 55 (1) ◽  

Abstract CLC 18.10LN is an austenitic stainless steel with 18% Cr, 9.5% Ni, and 0.14% N to provide good corrosion resistance at strengths above the other low-carbon stainless steels. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, machining, and joining. Filing Code: SS-950. Producer or source: Industeel USA, LLC.


Alloy Digest ◽  
1995 ◽  
Vol 44 (5) ◽  

Abstract SOLEIL C5 is a 13% chromium 4% nickel martensitic stainless steel with improved toughness and good corrosion resistance to fresh water. Shafts and compressor impellers for hydraulic applications is the area of primary usage. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, and joining. Filing Code: SS-595. Producer or source: Creusot-Marrel.


Alloy Digest ◽  
1956 ◽  
Vol 5 (8) ◽  

Abstract ENDURO FC is a free-machining chromium type stainless steel equivalent to AISI Type 416. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness, creep, and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-46. Producer or source: Republic Steel Corporation.


Alloy Digest ◽  
1983 ◽  
Vol 32 (6) ◽  

Abstract EASTERN STAINLESS TYPE 304L is the basic 18-8 chromium-nickel austenitic stainless steel with a very low carbon content (0.03% max.). Its general resistance to corrosion is similar to AISI Type 304 but, because of its low carbon content, it has superior resistance to the formation of harmful carbides that indirectly contribute to intergranular corrosion. It is recommended for most articles of welded construction. Postweld annealing is not necessary. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-427. Producer or source: Eastern Stainless Steel Company.


2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Saravanan S ◽  
Murugan G

This study addresses the effect of process parameters viz., loading ratio (mass of explosive/mass of flyer plate) and preset angle on dynamic bend angle, collision velocity and flyer plate velocity in dissimilar explosive cladding. In addition, the variation in interfacial microstructure and mechanical strength of aluminium 5052-stainless steel 304 explosive clads is reported. The interface exhibits a characteristic undulating interface with a continuous molten layer formation. The interfacial amplitude increases with the loading ratio and preset angle. Maximum hardness is observed at regions closer to the interface


2013 ◽  
Vol 795 ◽  
pp. 492-495 ◽  
Author(s):  
Mohd Noor Mazlee ◽  
Alvin Tan Yin Zhen ◽  
Shamsul Baharin Jamaludin ◽  
Nur Farhana Hayazi ◽  
Shaiful Rizam Shamsudin

Tensile shear strength and ageing treatment of dissimilar 6063 aluminum alloy-316L stainless steel joint fabricated by spot welding were investigated. The results showed that tensile shear strength increased with the increasing of welding current. The enhancement of tensile shear strength of the joints was due to the enlargement of the nugget diameter. It was also found that the tensile shear strength values for heat treated joint almost similar to that of non-heat treated joint.


1962 ◽  
Vol 84 (4) ◽  
pp. 466-476 ◽  
Author(s):  
W. A. Mohun

Variations in power during disk grinding have been explained and equations developed to represent the power in terms of the grinding variables. It has been shown that depth of cut is below the critical magnitude so that ultimate shear strength of the metal is involved for all but the initial 30 to 120 seconds of grinding. It has also been shown that the coefficient of friction is higher against stainless steel than against mild steel, and that the basic differences in performance and mechanism on these two metals originate in this property. Photomicrographs of microflats are shown. The mechanism of microdressing is explained in terms of thermal shock and mechanical impact in relation to the effect of applied load upon grinding efficiency.


Sign in / Sign up

Export Citation Format

Share Document