scholarly journals Applying Circular Economy to Construction Industry through Use of Waste Materials: A Review of Supplementary Cementitious Materials, Plastics, and Ceramics

Author(s):  
Mehrab Nodehi ◽  
Vahid Mohammad Taghvaee
Author(s):  
O. R. Ogirigbo ◽  
J. O. Ukpata ◽  
I. Inerhunwa

Ground Granulated Blast Furnace Slag (GGBS) is a type of Supplementary Cementitious Material (SCM) that is currently being used extensively in the global construction industry. SCMs are cheaper than Portland cement, help to improve certain properties of concrete and also help to reduce the environmental footprint associated with the production of Portland cement. GGBS is readily available in most parts of the world as a waste product from iron and steel production. However, its use as a SCM in some countries has not been fully maximized. This is primarily because of lack of documented studies on the properties of GGBS that influences its suitability as a SCM, especially in tropical environments. This paper reviewed the use of GGBS as a SCM for the partial replacement of Portland cement, with particular emphasis on its potential use in tropical warm environments such as Nigeria and other similar countries.


Concrete is a building material which is being utilized excessively in the world adjacent to water. The nature is influenced due to the extraction of raw matter and also because of the evolution of gases like CO2 . In the ongoing years, there is a speedy growth in the production of waste materials like glass wastes, plastic, Ground Granulated Blast furnace Slag, silica fume, coal ash, wood ash, rice husk ash, etc. Controlling and discarding issues emerge due to these wastes and inflict havoc on the nature. So as to curtail these issues, the waste materials are used as additives or partial substitutions for cement and aggregates in construction field. This paper focuses on strength properties and durability of concrete containing glass fibers by partial substitution of cement and fine aggregate with GGBS and Coal ash respectively. For this work, mix design using IS method is prepared for M30 grade and the tests are conducted for various dosages of glass fibers as 0.5, 1%, 1.5% and 2% by weight of cement. The substitution degree of GGBS is 30% and that of coal ash is 20%. The obtained outcomes are contrasted with conventional concrete


2019 ◽  
Vol 803 ◽  
pp. 239-245
Author(s):  
Ahmad Khartabil ◽  
Samer Al Martini

In the last few decades, the United Arab Emirates (UAE) witnessed rapid development in the construction industry. It was recently emphasized to adopt sustainability practice in all aspects related to construction. The recent sustainable practice that was enforced by Dubai Municipality in construction field is “greening the concrete” by solely replacing the Portland Cement with supplementary cementitious materials (SCMs), such as grand granulated blast furnace slag (GGBS) and fly ash. On the other hand, the use of recycled aggregates can also contribute to the greening of concrete and to the reduction of carbon foot print from the construction industry in the UAE. Consequently, it is significant to study the suitability of local available recycled aggregate and their effect on concrete fresh and hardened properties, in order to expand the current practice. The recycled aggregates, used in this investigation, are obtained from a local recycled aggregates plant in Abu Dhabi using concrete from demolished buildings in Abu Dhabi. The natural aggregates in concrete mixtures were replaced by recycled aggregates with the following percentages: 20%, 40%, 60% and 100%. The concrete parameters investigated are mainly the slump retention, rheology and compressive strength. The results are analyzed to arrive to pertinent conclusions for the utilization of concrete with recycled aggregates in different types of construction projects.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 251 ◽  
Author(s):  
Abdul Qudoos ◽  
In Kyu Jeon ◽  
Seong Soo Kim ◽  
Jeong Bae Lee ◽  
Hong Gi Kim

Increasing use of cement in the construction industry is causing an alarming increase in carbon dioxide (CO2) emissions, which is a serious environmental threat, it can be reduced by the addition of supplementary cementitious materials (SCMs). The commonly used SCMs like ground granulated blast furnace slag (GGBS), metakaolin (MK) and fly ash (FA) have been successfully used to replace the cement partially or completely. Polysilicon sludge obtained from the photovoltaic industry is also a type of waste material that can be used as SCM because it has high content of reactive SiO2. This study investigates the effects of replacing cement with polysilicon sludge in concrete. Different concrete specimens were made by replacing varying proportions of cement with polysilicon sludge and their properties, such as, fresh properties, compressive strength, heat release, chloride penetration, freeze/thaw resistance and microstructural investigations were determined. The results demonstrate that the polysilicon sludge can be used effectively to replace cement, and environmental threats associated with its disposal can be reduced.


2021 ◽  
pp. 1-8
Author(s):  
Hafiz Muhammad Nadir ◽  
◽  
Ash Ahmed ◽  

Concrete is one of the most widely used construction material in the world which uses aggregates and cement as a binder. Use of cement concrete and mining/ transportation of raw materials makes the construction industry the biggest emitter of CO2 by contributing up to 7-10% of global emissions. The waste materials from different industries and agriculture contribute to 90% of waste disposal/ recycling effort in the world. This research has focused to use a selection of waste materials as supplementary cementitious materials (SCM) to minimize the emission of CO2 and recycling/ absorption of waste from other industries to construction industry to make it more sustainable. The contemporary research has established use of pulverized fly ash (PFA), silica fume (SF), metakaolin (MK) and granulated ground blast furnace slag (GGBS) as suitable SCMs. This study has focused on using two established industrial waste SF and MK and two agricultural wastes, rice husk ash (RHA) and palm ash (PA), to determine and compare their potential use as pozzolanic SCMs and to expand the family of alternative pozzolanic binders in addition to PFA and GGBS. The w/c (w/b) ratio was 0.4 with an intended design mix strength classification of C50/60. The chemical composition of all the materials was determined through x-ray spectrometry/ diffraction test to ascertain the chemistry. All four materials satisfied the ASTM constituent criteria for pozzolans. In comparison to the control mix (100% cement content), all these materials improved the compressive strength from 2.5% to 30% and enhanced tensile strength from up to 17%, indeed all the SCM mixes had a higher compressive strength than the control. RHA exhibited the best performance in agricultural waste with 10% optimum quantity to give maximum compressive strength of 83 MPa and PA exhibited the optimum performance with 2.5% content and gave maximum compressive strength of 78 MPa. The addition of MK progressively increased the compressive strength with 20% content mix giving a strength of 84 MPa. The SF performed the best at optimum quantity of 2.5% and exhibited the highest compressive strength of 90 MPa. The results suggest that these SCM based concrete are recommended for formulation of high-strength concrete applications, i.e., 60+ MPa. Furthermore, all the SCMs had at least one mix which satisfied the C60/75 classification without reducing the w/b ratio below 0.4; this has significant positive ramifications for the development of sustainable high-performance concrete. The absorption of waste materials from industrial and agricultural fields can substantially reduce waste disposal and more pertinently facilitate in reducing the CO2 emission associated with the construction industry


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Niragi Dave ◽  
Ramesh Guduru ◽  
Anil Kumar Misra ◽  
Anil Kumar Sharma

Purpose The consumption of supplementary cementitious materials (SCMs) has increased enormously in the construction industry. These SCMs are often waste materials or industrial by-products. This study aims to investigate the bond strength using reinforcing bars in Normal Strength Concrete (M20 grade) and High Strength Concrete (M40 grade), developed using SCMs and data was compared with concrete prepared with ordinary portland cement (OPC). The findings of the study will help in reducing the dependency on OPC and promote the utilization of waste materials in Construction. Design/methodology/approach In the present study, the bond behavior between the steel bars and the concrete was investigated in controlled, binary and quaternary concretes of M20 and M40 grades. Following the conventional procedures, samples were prepared and mechanical tests conducted (as per IS:2770–1 code for M20 and M40 grade concrete structures), which showed an improvement in the bond strength depending on the extent of overall calcium and silica content in these composite mixtures, and thus reflected the importance of vigilant utilization of used industrial waste in the OPC as a replacement without exceeding silica content beyond certain percentages for enhanced structural properties. Findings Experimental evaluation of bond behavior results showed a brittle nature for the controlled (OPC) concrete mixtures. While binary and quaternary concrete was able to resist the load-carrying capacity under large deformations and prevented the split cracking and disintegration of the concretes. Among different variations in the chemistry, for both M20 and M40 grades, the maximum bond strengths were observed for 10% Metakaolin + 10% Silica Fume + 30% Fly Ash + 50% OPC composition and this could be attributed to the fineness of the additives, better packing and enhanced calcium silicate hydrate (C-S-H). Originality/value Quaternary concrete may be a future option in place of OPC concrete. Very limited data is available related to the bond strength of quaternary concrete. Experimental analysis on quaternary concrete shows that its use in construction can reduce both construction cost and a burden on natural raw materials used to make OPC.


2019 ◽  
Vol 803 ◽  
pp. 246-252 ◽  
Author(s):  
Ahmad Khartabil ◽  
Samer Al Martini

Green concrete is a recent sustainable practice in UAE that was enforced by Dubai Municipality in construction field within the emirate of Dubai to reduce the carbon foot print in construction industry and to increase the durability of the structures. This led the construction industry to reduce the usage of ordinary portland cement by replacing it with supplementary cementitious materials (SCMs) such as Grand Granulated Blast Furnace Slag (GGBS) and flyash (FA). Incorporating GGBS or FA in concrete mixtures can improve durability parameters of hardened concrete, such as resistance to water permeability, reduced water absorption and chloride penetration. This ultimately increases the structure’s service life by increasing the threshold of concrete mixture for chloride induced corrosion. On the other hand, carbonation induced corrosion to concrete is usually being ignored or forgotten generally, due its usual slow rate ingression in plain portland cement concrete mixtures. Several studies showed that incorporating some types of SCM – especially at high percentage - can reduce the concrete resistance to carbonation. Additionally and for concrete with recycled aggregate, carbonation investigation should be taken into consideration. This is since recycled aggregates are reused aggregates that are extracted from demolished structures and buildings which were already subjected to different environmental exposures and deteriorations. Unlike chloride penetration, there is no direct ASTM standard test to anticipate the concrete mixture resistance to carbonation at early ages. In this study, concrete mixtures with flyash and different recycled aggregate replacement percentages are investigated for carbonation resistance in accelerated proposed method, considering concrete mixtures’ key parameters like water-cement ratio, and total cement content. The results are analyzed to arrive to pertinent conclusions for the best utilization of sustainable concrete for carbonation resistance.


2013 ◽  
Vol 31 (3-6) ◽  
pp. 123-134 ◽  
Author(s):  
Velu Saraswathy ◽  
Subbiah P. Karthick

AbstractThe development and use of blended cement is growing rapidly in the construction industry mainly due to the consideration of energy, environment, and conservation of resources. Blended cements are produced using any of the supplementary cementitious materials such as silica fume (SF), fly ash, and ground granulated blast furnace slag. The use of SF in concrete may improve the strength and durability of concrete by creating a denser cement matrix compared with conventional concrete, thereby enhancing the service life of concrete structures. In this article, the effect of SF in concrete is reviewed from the point of view of durability. It includes carbonation, resistivity, chloride permeability/diffusivity, sulfate resistance, and corrosion resistance.


2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


Sign in / Sign up

Export Citation Format

Share Document