scholarly journals Comparative Evaluation of Potential Impacts of Agricultural and Industrial Waste Pozzolanic Binders on Strengths of Concrete

2021 ◽  
pp. 1-8
Author(s):  
Hafiz Muhammad Nadir ◽  
◽  
Ash Ahmed ◽  

Concrete is one of the most widely used construction material in the world which uses aggregates and cement as a binder. Use of cement concrete and mining/ transportation of raw materials makes the construction industry the biggest emitter of CO2 by contributing up to 7-10% of global emissions. The waste materials from different industries and agriculture contribute to 90% of waste disposal/ recycling effort in the world. This research has focused to use a selection of waste materials as supplementary cementitious materials (SCM) to minimize the emission of CO2 and recycling/ absorption of waste from other industries to construction industry to make it more sustainable. The contemporary research has established use of pulverized fly ash (PFA), silica fume (SF), metakaolin (MK) and granulated ground blast furnace slag (GGBS) as suitable SCMs. This study has focused on using two established industrial waste SF and MK and two agricultural wastes, rice husk ash (RHA) and palm ash (PA), to determine and compare their potential use as pozzolanic SCMs and to expand the family of alternative pozzolanic binders in addition to PFA and GGBS. The w/c (w/b) ratio was 0.4 with an intended design mix strength classification of C50/60. The chemical composition of all the materials was determined through x-ray spectrometry/ diffraction test to ascertain the chemistry. All four materials satisfied the ASTM constituent criteria for pozzolans. In comparison to the control mix (100% cement content), all these materials improved the compressive strength from 2.5% to 30% and enhanced tensile strength from up to 17%, indeed all the SCM mixes had a higher compressive strength than the control. RHA exhibited the best performance in agricultural waste with 10% optimum quantity to give maximum compressive strength of 83 MPa and PA exhibited the optimum performance with 2.5% content and gave maximum compressive strength of 78 MPa. The addition of MK progressively increased the compressive strength with 20% content mix giving a strength of 84 MPa. The SF performed the best at optimum quantity of 2.5% and exhibited the highest compressive strength of 90 MPa. The results suggest that these SCM based concrete are recommended for formulation of high-strength concrete applications, i.e., 60+ MPa. Furthermore, all the SCMs had at least one mix which satisfied the C60/75 classification without reducing the w/b ratio below 0.4; this has significant positive ramifications for the development of sustainable high-performance concrete. The absorption of waste materials from industrial and agricultural fields can substantially reduce waste disposal and more pertinently facilitate in reducing the CO2 emission associated with the construction industry

2019 ◽  
Vol 828 ◽  
pp. 14-17
Author(s):  
Malgorzata Ulewicz ◽  
Jakub Jura

The preliminary results of utilization of fly and bottom ash from combustion of biomass for the produce of cement mortars has been presented. Currently, this waste are deposited in industrial waste landfills. The chemical composition of waste materials was determined using X-ray fluorescence (spectrometer ARL Advant 'XP). ). In the studies sand was replaced by mix of fly and bottom ash from the combustion of biomass in an amount of 10-30% by weight of cement CEM I 42.5 R (Cemex). The obtained cement mortar concrete were subjected to microscopic examination (LEO Electron Microscopy Ltd.) and their compressive strength (PN-EN-196-1), frost resistance (PN-EN 1015-11 and PN-B -04500 ) and absorbability (PN-85/B-04500) were identified. The obtained results showed, the replacement of the cement by mix ashes from combustion of biomass reduce consumption of raw materials and will have a good influence on the environment.


2020 ◽  
Vol 10 (14) ◽  
pp. 4844 ◽  
Author(s):  
Sayed Mohamad Soleimani ◽  
Abdel Rahman Alaqqad ◽  
Adel Jumaah ◽  
Abdulaziz Majeed

The purpose of this paper is to examine the effects of introducing waste materials sourced from factories in Kuwait as partial replacements of conventional concrete materials. Rejected ceramic products and unused electric-arc furnace slag were treated and partially replaced portions of coarse and fine aggregates, and the possibility of partially replacing cement was also examined. Initial results showed that all aggregate sizes can be replaced with either of the waste materials without compromising the concrete’s rheological properties or compressive strength. Additionally, pulverized ceramic powder was shown to improve the compressive strength of mortar cube samples. Finally, the two waste materials were combined in hybrid mixes that aimed to have the highest utilization of waste materials while maintaining (if not improving) the properties of a previously established benchmark self-consolidating concrete (SCC) mix. The results of this study show that waste materials sourced from landfills in Kuwait can be repurposed to replace portions of conventional construction materials in a self-consolidating, high-performance concrete mix with significantly better mechanical properties and higher compressive strength than that shown by a benchmark mix.


2021 ◽  
Vol 72 (1) ◽  
pp. 76-83
Author(s):  
Lam Le Hong ◽  
Lam Dao Duy ◽  
Huu Pham Duy

The demand for High Performance Concrete (HPC) is steadily increasing with massive developments. Conventionally, it is possible to use industrial products such as silica fume (SF), fly ash, as supplementary cementitious materials (SCM), to enhance the attributes of HPC. In recent years, nano-silica (NS) is used as an additive in added mainly to fill up the deviation arises with the addition of SF for HPC. This study aims to optimize the proportion of NS (produced in Vietnam) in the mixture used for fabricating 70 MPa high-performance concrete. SiO2 powder with particle size from 10 to 15 nm were used for mixing. A series of compressive strength test of HPC with nano-SiO2 varied from 0 to 2.8 percent of total of all binders (0%, 1.2%, 2%, 2.8%), and the fixed percentage of silica fume at 8% were proposed. Results show compressive strength increases with the increase of nano-SiO2, but this increase stops after reaching 2%. And at day 28 of the curing period, only concrete mixture containing of 8% silica fume and 2% nano-SiO2, had the highest compressive strength.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 770 ◽  
Author(s):  
How-Ji Chen ◽  
Yi-Lin Yu ◽  
Chao-Wei Tang

Compared with ordinary concrete, ultra-high performance concrete (UHPC) has excellent toughness and better impact resistance. Under high temperatures, the microstructure and mechanical properties of UHPC may seriously deteriorate. As such, we first explored the properties of UHPC with a designed 28-day compressive strength of 120 MPa or higher in the fresh mix phase, and measured its hardened mechanical properties at seven days. The test variables included: the type of cementing material and the mixing ratio (silica ash, ultra-fine silicon powder), the type of fiber (steel fiber, polypropylene fiber), and the fiber content (volume percentage). In addition to the UHPC of the experimental group, pure concrete was used as the control group in the experiment; no fiber or supplementary cementitious materials (silica ash, ultra-fine silicon powder) were added to enable comparison and discussion and analysis. Then, the UHPC-1 specimens of the experimental group were selected for further compressive, flexural, and splitting strength tests and SEM observations after exposure to different target temperatures in an electric furnace. The test results show that at room temperature, the 56-day compressive strength of the UHPC-1 mix was 155.8 MPa, which is higher than the >150 MPa general compressive strength requirement for ultra-high-performance concrete. The residual compressive strength, flexural strength, and splitting strength of the UHPC-1 specimen after exposure to 300, 400, and 500 °C did not decrease significantly, and even increased due to the drying effect of heating. However, when the temperature was 600 °C, spalling occurred, so the residual mechanical strength rapidly declined. SEM observations confirmed that polypropylene fibers melted at high temperatures, thereby forming other channels that helped to reduce the internal vapor pressure of the UHPC and maintain a certain residual strength.


2018 ◽  
Vol 7 (2.1) ◽  
pp. 79 ◽  
Author(s):  
V Srinivasa Reddy ◽  
R Nirmala

In the last three decades, supplementary cementitious materials such as fly ash, silica fume and ground granulated blast furnace slag have been judiciously utilized as cement replacement materials as these can significantly enhance the strength and durability characteristics of concrete in comparison with ordinary Portland cement (OPC) alone. Hence, high-performance concretes can be produced at lower water/powder ratios by incorporating these supplementary materials. One of the main objectives of the present research work was to investigate synergistic action of binary, ternary and quaternary blended high strength grade (M80) concretes on its compressive strength. For blended high strength grade (M80) concrete mixes the optimum combinations are: Binary blend (95%OPC +5% FA, 95%OPC +5% MS and 95%OPC +5%MK), ternary blend (65%OPC+20%FA+15%MS) and quaternary blend (50%OPC+28%FA+11%MS+11%MK). Use of metakaolin in fly ash based blended concretes enhances compressive strength significantly and  found to be cost effective in terms of less cement usage, increased usage of fly ash and also plays a major role in early strength development  of fly ash based blended concrete.  


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 196
Author(s):  
Shiming Liu ◽  
Miaomiao Zhu ◽  
Xinxin Ding ◽  
Zhiguo Ren ◽  
Shunbo Zhao ◽  
...  

Durability of concrete is of great significance to prolong the service life of concrete structures in corrosive environments. Aiming at the economical and environment-friendly production of concrete by comprehensive utilization of the supplementary cementitious materials made of industrial byproducts, the resistances to chloride penetration, sulfate attack, and frost of high-performance concrete were studied in this paper. Fifteen concretes were designed at different water–binder ratio with the changes of contents of fly ash (FA), silica fume (SF), ground granulated blast-furnace slag (GGBS), and admixture of sulfate corrosion-resistance (AS). The compressive strength, the total electric flux of chloride penetrability, the sulfate resistance coefficient, and the indices of freezing and thawing were measured. Results indicate that, depending on the chemical composition, fineness, and pozzolanic activity, the supplementary cementitious admixtures had different effects on the compressive strength and the durability of concrete; despite having a higher fineness and pozzolanic activity, the GGBS gave out a negative effect on concrete due to a similar chemical composition with cement; the SF and FA presented beneficial effects on concrete whether they were used singly with GGBS or jointly with GGBS; the AS improved the compressive strength and the sulfate corrosion resistance of concrete. In general, the grade of durability was positively related to the compressive strength of concrete. Except for the concretes admixed only with GGBS or with GGBS and FA, others had super durability with the compressive strength varying from 70 MPa to 113 MPa. The concretes with water to binder ratio of 0.29 and total binders of 500 kg/m3 admixed with 7% FA + 8% SF + 8% GGBS or 7% FA + 8% SF + 8% GGBS + (10~12)% AS presented the highest grades of resistances specified in China codes to chloride penetration, sulfate corrosion, and frost, while the compressive strength was about 100 MPa.


2015 ◽  
Vol 37 ◽  
pp. 269
Author(s):  
Mohsen Eslami ◽  
Farzaneh Fakeri Raof ◽  
Mohammad Jorjor Zadeh

Today, retrieval and optimal use of exiting recourses and environmental protection is in view of seriousattention of the development in the world. Approximately 300 thousand tons of old tires in the country hascaused environmental pollution. Recycling of waste tires is completely different to which is done in our country.Unfortunately recycling scrap tires has not favorable growth in our country. Millions of tires are discarded eachyear, and the scrap piles of rubber this creates pose serious environmental problems. Rubber tires also leachhazardous materials into the environment as they decompose. This study was performed in Ahvaz metropolitan.In this study there are 9 building blocks which had different percentages of rubber powder as filling materials.Pressure test done on these blocks. The result of the stress test on the samples compared with the result of thestress test on the main samples. The comparison showed that by adding 10% of rubber powder instead of fillermaterial in the process of preparing the block, there was no change in compressive strength. Therefore this blockwill be replaced by blocks used in construction industry. At least some of the environmental hazards caused byincorrect tire were buried as were recommendation to improve.


2022 ◽  
Vol 955 (1) ◽  
pp. 012010
Author(s):  
A Kustirini ◽  
Antonius ◽  
P Setiyawan

Abstract Geopolymer concrete is concrete that uses environmentally friendly materials, using fly ash from waste materials from the coal industry as a substitute for cement. To produce geopolymer concrete, an alkaline activator is required, with a mixture of Sodium Hydroxide and Sodium Silicate. This research is an experimental study to determine the effect of variations in the concentration of sodium hydroxide (NaOH) 8 Mol, 10 Mol, 12 Mol, and 14 Mol on the compressive strength of geopolymer concrete. Mortar Geopolymer uses a mixture of 1: 3 for the ratio of fly ash and sand, 2.5: 0.45 for the ratio of sodium silicate and sodium hydroxide as an alkaline solution. The specimens used a cube mold having dimension 5 cm x 5 cm x 5 cm, then tested at 7 days and 28 days. The test resulted that concentration of NaOH 12 Mol obtained the maximum compressive strength of geopolymer concrete, that is 38.54 MPa. At concentrations of 12 Mol NaOH and exceeding 12M, the compressive strength of geopolymer concrete decreased.


2019 ◽  
Vol 8 (3) ◽  
pp. 3435-3438

Billions of waste is produced in the world but the wastes are not properly recycled. Recycling of materials also different issues and it needs more energy. The waste materials are stored in a land also create more amounts of problem and it Leeds to land pollution. The utilization of waste materials in the manufacturing of building is a challenging task. But it is the good solution for disposal of waste materials in the developed building materials. We need to analyze the waste materials first then only we can utilize the materials in the perfect way. Now a day’s lot of research is going on in the waste utilization area. This literature study mentioned the various waste materials and how it is used in our real construction field. The waste utilization gave two things. First one is reduction of the pollution and the second is save the natural materials for sustainable development. This paper also shows the betterment results of the waste utilization technique.


2021 ◽  
Vol 13 (19) ◽  
pp. 10605
Author(s):  
Mohammed A. Abed ◽  
Bassam A. Tayeh ◽  
B. H. Abu Bakar ◽  
Rita Nemes

The increasing demand for eco-efficient concrete puts pressure on the industry to innovate new alternatives for its constituent materials. Coarse recycled concrete aggregates (RA) and supplementary cementitious materials (SCMs) are considered promising substitutes for coarse natural aggregates (NA) and cement, respectively. Using destructive and non-destructive testing methods, the present work aims to evaluate the effect of RA and different types of waste SCMs on the long-term performance of self-compacting high-performance concrete (SCHPC). Twenty-one mixes that were prepared with a 0.35 water-to-binder ratio were tested for their compressive strength, surface hardness, and ultrasonic pulse velocity. These tests were conducted over a two-year period at ambient temperature and again after exposure to up to 150 freeze–thaw cycles. Study findings demonstrated the possibility of developing eco-efficient SCHPC mixes using RA and waste SCMs. In addition, correlations have been introduced for predicting the compressive strength of SCHPC.


Sign in / Sign up

Export Citation Format

Share Document