A phosphorimetric investigation of several sulfonamide drugs: a rapid direct procedure for the determination of drug levels in pooled human serum with specific application to sulfadiazine, sulfamethazine, sulfamerazine and sulfacetamide

1966 ◽  
Vol 36 ◽  
pp. 352-359 ◽  
Author(s):  
H.C. Hollifield ◽  
J.D. Winefordner
Keyword(s):  
Chirality ◽  
1998 ◽  
Vol 10 (6) ◽  
pp. 507-512 ◽  
Author(s):  
Pilar Gort�zar ◽  
Alfredo Ro�n ◽  
Jes�s T. V�zquez

Author(s):  
L Jack ◽  
C Cunningham ◽  
I D Watson ◽  
M J Stewart

Free phenytoin has been determined using micro-scale ultracentrifugation followed by analysis by EMIT. The effect of temperature on the determined free fraction was investigated and the ultracentrifugation procedure validated against ultrafiltration. Ultracentrifugation gave free fractions which were on average 16% lower than those obtained using ultrafiltration, but correlation was good, as was the correlation with measurements of total phenytoin ( r=0·90). Micro-scale ultracentrifugation is a simple procedure which can be of great utility in the measurement and investigation of free drug levels.


Author(s):  
Hina Shamshad ◽  
Ali Sayqal ◽  
Jahan Zeb ◽  
Agha Zeeshan Mirza

Abstract A simple, accurate and precise RP-HPLC method was developed for the simultaneous determination of chloroquine, pyrimethamine and cetirizine hydrochloride concentrations in bulk drug and human serum. The assay was performed using a mobile phase of methanol: water (70:30) at pH of 2.8 ± 0.05 on the Purospher C-18 column with UV detection at 230 nm and rosuvastatin used as an internal standard. The retention times observed for chloroquine, pyrimethamine and cetirizine hydrochloride were 3.5, 2.5 and 5.5 minutes, respectively. The method was found to be specific for the assayed drugs showing a linear response in the concentration range of 1–100 μg mL−1 with coefficients of determination values of (r = 0.999). The method was developed and validated according to ICH guidelines. The method was used to monitor the serum samples and was found to be sensitive for therapeutic purposes, showing the potential to be a useful tool for routine analysis in laboratories.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3321
Author(s):  
Katarzyna Kurpet ◽  
Rafał Głowacki ◽  
Grażyna Chwatko

Biothiols are extremely powerful antioxidants that protect cells against the effects of oxidative stress. They are also considered relevant disease biomarkers, specifically risk factors for cardiovascular disease. In this paper, a new procedure for the simultaneous determination of human serum albumin and low-molecular-weight thiols in plasma is described. The method is based on the pre-column derivatization of analytes with a thiol-specific fluorescence labeling reagent, monobromobimane, followed by separation and quantification through reversed-phase high-performance liquid chromatography with fluorescence detection (excitation, 378 nm; emission, 492 nm). Prior to the derivatization step, the oxidized thiols are converted to their reduced forms by reductive cleavage with sodium borohydride. Linearity in the detector response for total thiols was observed in the following ranges: 1.76–30.0 mg mL−1 for human serum albumin, 0.29–5.0 nmol mL−1 for α-lipoic acid, 1.16–35 nmol mL−1 for glutathione, 9.83–450.0 nmol mL−1 for cysteine, 0.55–40.0 nmol mL−1 for homocysteine, 0.34–50.0 nmol mL−1 for N-acetyl-L-cysteine, and 1.45–45.0 nmol mL−1 for cysteinylglycine. Recovery values of 85.16–119.48% were recorded for all the analytes. The developed method is sensitive, repeatable, and linear within the expected ranges of total thiols. The devised procedure can be applied to plasma samples to monitor biochemical processes in various pathophysiological states.


Sign in / Sign up

Export Citation Format

Share Document