scholarly journals A three-dimensional kinematic acquisition and intersegmental dynamic analysis system for human motion

1985 ◽  
Vol 18 (7) ◽  
pp. 531
Author(s):  
E.K. Antonsson ◽  
R.W. Mann
2011 ◽  
Vol 48-49 ◽  
pp. 1149-1153 ◽  
Author(s):  
Hai Long Su ◽  
Da Wei Zhang

Human motion capture system based on a new kind of error compensation technology was developed and used this to assess human motion. On the basis of three-dimensional reconstruction and some essential factors influencing on the measurement accuracy, the measurement error theory and the modified and improved human motion analysis system was established. The experimental data indicate that the measurement precision of the modified and improved system is more precise than the original system on human motion measurement and capturing.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1242
Author(s):  
Georg Haider ◽  
Ursula Schulz ◽  
Nikola Katic ◽  
Christian Peham ◽  
Gilles Dupré

Single-port access systems (SPASs) are currently used in human and veterinary surgeries. However, they pose technical challenges, such as instrument crowding, intra- and extracorporeal instrument collision, and reduced maneuverability. Studies comparing the maneuverability of the scopes and instruments in different SPASs are lacking. This study aimed to compare the maneuverability of three different SPASs: the Covidien SILS-port, Storz Endocone, and glove port. A clear acrylic box with artificial skin placed at the bottom was used to mimic the abdominal wall and cavity. The three SPASs were placed from below, and a 10-mm endoscope and 5-mm instrument were introduced. A motion analysis system consisting of 18 cameras and motion analysis software were used to track the movement of the endoscope and instrument, to determine the volume of the cone-shaped, three-dimensional figures over which movement was possible, with higher values indicating greater maneuverability. The Mann–Whitney U test was used for the analysis. The maneuverability of the endoscope alone was significantly higher in the glove port system than in the other two SPASs. When inserting an additional instrument, the maneuverability significantly decreased in the SILS-port and Endocone, but not in the glove port. The highest maneuverability overall was found in the glove port.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1791
Author(s):  
Chi Cuong Vu ◽  
Thanh Tai Nguyen ◽  
Sangun Kim ◽  
Jooyong Kim

Health monitoring sensors that are attached to clothing are a new trend of the times, especially stretchable sensors for human motion measurements or biological markers. However, price, durability, and performance always are major problems to be addressed and three-dimensional (3D) printing combined with conductive flexible materials (thermoplastic polyurethane) can be an optimal solution. Herein, we evaluate the effects of 3D printing-line directions (45°, 90°, 180°) on the sensor performances. Using fused filament fabrication (FDM) technology, the sensors are created with different print styles for specific purposes. We also discuss some main issues of the stretch sensors from Carbon Nanotube/Thermoplastic Polyurethane (CNT/TPU) and FDM. Our sensor achieves outstanding stability (10,000 cycles) and reliability, which are verified through repeated measurements. Its capability is demonstrated in a real application when detecting finger motion by a sensor-integrated into gloves. This paper is expected to bring contribution to the development of flexible conductive materials—based on 3D printing.


2006 ◽  
Vol 03 (04) ◽  
pp. 445-464 ◽  
Author(s):  
HIDEYUKI SAKURAI

Element-free methods (EFreeMs) are expected to eliminate the mesh generation task. However, a computer aided engineering (CAE) system by EFreeM for complex three-dimensional (3D) objects has not yet been developed. This paper discusses the obstacles to the CAE and way to solve them. A 3D groundwater flow analysis system with an EFreeM is presented as a practical CAE. In the system, instead of pursuing mesh-less CAE, a unique mesh is employed to achieve the practical CAE. Some 3D examples show the performance and usefulness of the system. Two serious drawbacks of the EFreeM are also discussed from the viewpoint of the practical CAE.


2021 ◽  
Vol 7 (5) ◽  
pp. 4900-4913
Author(s):  
Li Huang ◽  
Jianqiu Hu

Objectives: With the rapid development of sports biomechanics, a new frontier discipline, the modeling and Simulation of human motion, as one of the cutting-edge research topics of sports biomechanics, is receiving more and more attention.. Methods: Based on this, this paper provides theoretical support for the analysis and research of foot stress in the process of training and applies it to guiding practice by using the analysis technology based on sports biomechanics and the method of foot pressure and simulation modeling and analysis system. Results: The results of the study showed that the injury of the athletes in the lower limbs accounted for about 46.7%, followed by the injury of the upper limbs and the injury of the trunk. In the lower extremity injury, the most common part of the foot joint is about 28.1%. Conclusion: Studies have shown that the changes in the force of the athlete’s foot after fatigue have not had the good stability before, the duration of each stage of the completion of the movement is changing, and the control of the ankle joint is decreasing, which greatly increases the foot joint. The possibility of injury.


Sign in / Sign up

Export Citation Format

Share Document