Influence of adsorption and interfacial reactions induced by chromium and titanium on the wettability of vitreous carbon by NiPd brazing alloys

1991 ◽  
Vol 175 (1) ◽  
pp. 13-27 ◽  
Author(s):  
P. Kritsalis ◽  
L. Coudurier ◽  
C. Parayre ◽  
N. Eustathopoulos
Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


2013 ◽  
Vol 51 (5) ◽  
pp. 385-391 ◽  
Author(s):  
Gue-Serb Cho ◽  
Jung-Kyu Lim ◽  
Sonn-Yool Choi ◽  
Kyong-Hwan Choe ◽  
Sang-Sub Kim

2021 ◽  
Vol 11 (2) ◽  
pp. 532
Author(s):  
Evgenios Kokkinos ◽  
Aggeliki Banti ◽  
Ioanna Mintsouli ◽  
Aikaterini Touni ◽  
Sotiris Sotiropoulos ◽  
...  

A combination of thermal (500–750 °C in air) and hydrometallurgical (acidic) treatments have been applied to dried tannery sludge, resulting in the initial conversion of Cr(III) to Cr(VI) and its subsequent leaching as wastewater with high Cr(VI) concentration content (3000–6000 mg/L), presenting an extraction efficiency over 90%. The optimal electrochemical conditions for the subsequent Cr(VI) reduction with respect to acid concentration and acid kind were established by applying appropriate rotating disc electrode (RDE) experiments, using a glassy carbon (GC) electrode, and found to be equal or higher than 0.5 M H2SO4 (for the respective Cr(III) concentration range studied). The result from leaching Cr(VI) wastewater was further treated in small electrochemical bench-scale reactor for its conversion back to Cr(III) form, potentially reusable in the tanning industry. Ti-based anodes and a reticulated vitreous carbon (RVC) cathode were used to treat small (350–800 mL) samples in batch, as well as in batch-recirculation prototype electrochemical reactors, under the application of constant current or appropriately applied potential to achieve Cr(VI) conversion/reduction efficiency over 95%.


Chemosphere ◽  
2021 ◽  
pp. 131573
Author(s):  
Vanessa M. Vasconcelos ◽  
Géssica O.S. Santos ◽  
Katlin I.B. Eguiluz ◽  
Giancarlo R. Salazar-Banda ◽  
Iara de Fatima Gimenez

2015 ◽  
Vol 46 (6) ◽  
pp. 2372-2375 ◽  
Author(s):  
Shan Ye ◽  
Jen-Dong Hwang ◽  
Chih-Ming Chen
Keyword(s):  

1997 ◽  
Vol 175 (3) ◽  
pp. 219-227 ◽  
Author(s):  
M. Rahmoune ◽  
J.P. Eymery ◽  
M.F. Denanot

Sign in / Sign up

Export Citation Format

Share Document