Numerical simulation of the transient temperature distribution inside a close-packed array of cylindrical tubes during heating and cooling under high vacuum

1980 ◽  
Vol 56 (2) ◽  
pp. 359-368 ◽  
Author(s):  
Sergio Pissanetzky
Author(s):  
Keiya Fujimoto ◽  
Hiroaki Hanafusa ◽  
Takuma Sato ◽  
Seiichiro HIGASHI

Abstract We have developed optical-interference contactless thermometry (OICT) imaging technique to visualize three-dimensional transient temperature distribution in 4H-SiC Schottky barrier diode (SBD) under operation. When a 1 ms forward pulse bias was applied, clear variation of optical interference fringes induced by self-heating and cooling were observed. Thermal diffusion and optical analysis revealed three-dimensional temperature distribution with high spatial (≤ 10 μm) and temporal (≤ 100 μs) resolutions. A hot spot that signals breakdown of the SBD was successfully captured as an anormal interference, which indicated a local heating to a temperature as high as 805 K at the time of failure.


1999 ◽  
Vol 27 (1) ◽  
pp. 22-47 ◽  
Author(s):  
H. Sakai ◽  
K. Araki

Abstract Tire skid marks at the scene of an accident are often used as evidence and are a very important phenomenon. However, the mechanism of this complex phenomenon has not yet been fully examined. Tires are manufactured by a chemical reaction in which rubber molecules are combined into a network structure during a process called vulcanization, in which the tire is heated in a mold. The transient temperature distribution is important in determining the state of vulcanization, but the analysis is very difficult. We treat the tire tread as a rubber slab to estimate the temperature history during heating and cooling. Then we calculate the vulcanization index using Arrhenius's equation, assuming that the rate of chemical reaction approximately doubles as the temperature increases by 10° C. Finally, we calculate the transient temperature distribution of the tread due to the heat generated by internal friction (rolling resistance of the tire), and the heat generated by sliding friction under conditions of severe cornering and braking. We investigate a criterion for modeling the occurrence of tire skid marks, assuming that skid marks are caused by exceeding the softening temperatures of the rubber and asphalt.


2010 ◽  
Vol 4 (6) ◽  
pp. 885-892 ◽  
Author(s):  
Wiroj Limtrakarn ◽  
Somporn Reepolmaha ◽  
Pramote Dechaumphai

Abstract Background: During cataract operation (phacoemulsification), a phaco needle-tip is inserted into the anterior chamber of eye. Then, heat is generated by the oscillation of the phaco needle, which may injury the corneal endothelial cells. There are no data available for temperature responses at the corneal endothelium to heat from the phaco needle during phacoemulsification. Objective: Investigate temperature distribution on the corneal endothelium during ophthalmic phacoemulsification using numerical simulation, and compare the transient temperature response to heat between balanced salt solution (BSS) and ophthalmic viscoelastic device (OVD), Viscoat®. Methods: Heat flux from a phaco needle was measured with thermal properties of BSS and AVS in an experimental setting. Then, nodeless variable finite element method was applied to predict temperature changes in the eye by the phaco needle inserted into the anterior chamber. The transient temperature distribution on the corneal endothelium was calculated at 10, 20, and 30 seconds after heat generation by the needle. Results: The heat generation of phaco needle without sleeve cover was 1.6 kW/m2. The numerical simulation showed that the maximum temperature occurs on the wound location at all times after heat generation by the phaco needle. Especially, at time 30 seconds, it was 49.2 and 41.7°C in BSS and OVD, respectively. The temperature elevation by the phaco needle was lower in OVD than BSS. Conclusion: Phacoemulsification is a heat-generating procedure performed between the anterior chamber structures of eye. During this procedure, OVD may protect the corneal endothelium against heat better than BSS.


2021 ◽  
Vol 141 (11) ◽  
pp. 712-717
Author(s):  
Akira Daibo ◽  
Yoshimitsu Niwa ◽  
Naoki Asari ◽  
Wataru Sakaguchi ◽  
Yo Sasaki ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2935 ◽  
Author(s):  
Sayantan Ganguly

An exact integral solution for transient temperature distribution, due to injection-production, in a heterogeneous porous confined geothermal reservoir, is presented in this paper. The heat transport processes taken into account are advection, longitudinal conduction and conduction to the confining rock layers due to the vertical temperature gradient. A quasi 2D heat transport equation in a semi-infinite porous media is solved using the Laplace transform. The internal heterogeneity of the geothermal reservoir is expressed by spatial variation of the flow velocity and the effective thermal conductivity of the medium. The model results predict the transient temperature distribution and thermal-front movement in a geothermal reservoir and the confining rocks. Another transient solution is also derived, assuming that longitudinal conduction in the geothermal aquifer is negligible. Steady-state solutions are presented, which determine the maximum penetration of the cold water thermal front into the geothermal aquifer.


Sign in / Sign up

Export Citation Format

Share Document