On the kinetics of the approach to equilibrium

Physica ◽  
1961 ◽  
Vol 27 (7) ◽  
pp. 629-646 ◽  
Author(s):  
I. Prigonine ◽  
P. Résibois
1955 ◽  
Vol 184 (1) ◽  
pp. 175-182 ◽  
Author(s):  
Karlman Wasserman ◽  
Jeanne D. Joseph ◽  
H. S. Mayerson

Unanesthetized, healthy greyhounds were infused with 25% albumin or bled, injected with I131-labeled albumin and albumin specific activities determined. It is shown that the albumin specific activity curves can be altered by changing the ratio of the vascular to extravascular albumin masses in a manner predicted from the mathematics of a two-compartment system. Increase of vascular albumin mass relative to extravascular mass results in a smaller initial disappearance of albumin specific activity from the blood stream and a faster approach to equilibrium. Decrease of vascular albumin mass relative to extravascular mass by bleeding shows that 50% of albumin replacement after hemorrhage appears to be accomplished within 24 hours. Almost all of this protein comes from the extravascular compartment. Rapid anabolism accounts for the replenishment of protein for the next 2–5 days, during and after which there is a reduced catabolism of the existing plasma albumin. The results indicate that an extravascular albumin mass exists as a separate entity and net movements may occur from this mass into the plasma when the equilibrium between the vascular and extravascular masses is disturbed.


2017 ◽  
Author(s):  
R. G. Kraus ◽  
D. Mcnabb ◽  
M. Kumar ◽  
J. Eggert ◽  
J. Borg ◽  
...  

1977 ◽  
Vol 11 (8) ◽  
pp. 677-680 ◽  
Author(s):  
G.J. Shiflet ◽  
H.I. Aaronson ◽  
T.H. Courtney

1934 ◽  
Vol 17 (4) ◽  
pp. 507-516 ◽  
Author(s):  
W. J. V. Osterhout ◽  
S. E. Kamerling

A model is described which throws light on the mechanism of accumulation. In the model used an external aqueous phase A is separated by a non-aqueous phase B (representing the protoplasm) from the artificial sap in C. A contains KOH and C contains HCl: they tend to mix by passing through the non-aqueous layer but much more KOH moves so that most of the KCl is formed in C, where the concentration of potassium becomes much greater than in A. This accumulation is only temporary for as the system approaches equilibrium the composition of A approaches identity with that of C, since all the substances present can pass through the non-aqueous layer. Such an approach to equilibrium may be compared to the death of the cell as the result of which accumulation disappears. During the earlier stages of the experiment potassium tends to go in as KOH and at the same time to go out as KCl. These opposing tendencies do not balance until the concentration of potassium inside becomes much greater than outside (hence potassium accumulates). The reason is that KCl, although its driving force be great, moves very slowly in B because its partition coefficient is low and in consequence its concentration gradient in B is small. This illustrates the importance of partition coefficients for penetration in models and in living cells. It also indicates that accumulation depends on the fact that permeability is greater for the ingoing compound of the accumulating substance than for the outgoing compound. Other things being equal, accumulation is increased by maintaining a low pH in C. Hence we may infer that anything which checks the production of acid in the living cell may be expected to check accumulation and growth. This model recalls the situation in Valonia and in most living cells where potassium accumulates as KCl, perhaps because it enters as KOH and forms KA in the sap (where A is an organic anion). In some plants potassium accumulates as KA but when HCl exists in the external solution it will tend to enter and displace the weaker acid HA (if this be carbonic it can readily escape): hence potassium may accumulate to a greater or less extent as KCl. Injury of the cell may produce a twofold effect, (1) increase of permeability, (2) lessened accumulation. The total amount of electrolyte taken up in a given time will be influenced by these factors and may be greater than normal in the injured cell or less, depending somewhat on the length of the interval of time chosen.


Author(s):  
J. F. DeNatale ◽  
D. G. Howitt

The electron irradiation of silicate glasses containing metal cations produces various types of phase separation and decomposition which includes oxygen bubble formation at intermediate temperatures figure I. The kinetics of bubble formation are too rapid to be accounted for by oxygen diffusion but the behavior is consistent with a cation diffusion mechanism if the amount of oxygen in the bubble is not significantly different from that in the same volume of silicate glass. The formation of oxygen bubbles is often accompanied by precipitation of crystalline phases and/or amorphous phase decomposition in the regions between the bubbles and the detection of differences in oxygen concentration between the bubble and matrix by electron energy loss spectroscopy cannot be discerned (figure 2) even when the bubble occupies the majority of the foil depth.The oxygen bubbles are stable, even in the thin foils, months after irradiation and if van der Waals behavior of the interior gas is assumed an oxygen pressure of about 4000 atmospheres must be sustained for a 100 bubble if the surface tension with the glass matrix is to balance against it at intermediate temperatures.


Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


Sign in / Sign up

Export Citation Format

Share Document