Hydrolysis of polyacrylamide and acrylic acid-acrylamide copolymers at neutral pH and high temperature

Polymer ◽  
1988 ◽  
Vol 29 (5) ◽  
pp. 860-870 ◽  
Author(s):  
Houchang Kheradmand ◽  
Jeanne François ◽  
Véronique Plazanet
2017 ◽  
Vol 735 ◽  
pp. 136-142 ◽  
Author(s):  
Nik Raikhan Nik Him ◽  
Nurul Shafika Azmi

Enzyme-added detergent must have the capability to operate at high temperature to support the enzyme proteins to clean soiled-fabrics at optimum conditions. Lipase from Bacillus stearothermophilus nr22 (Lip.nr-22) has improved the oil removal from soiled-cotton fabric by 38.8-51.4% in 4 types of local commercial detergents. The later was the oil removal from an unrevealed detergent. The optimum conditions were 108U/ml Lip.nr-22 in 0.1M, pH 7.0, washing temperature and washing time interval as 80°C and 40 min, respectively; shaking wash at 300 rpm and percentage of detergent concentration as 0.5. Lip.nr-22 is a very potential enzyme in high temperature-neutral pH operated laundry detergent formulations. It has exhibited a very excellent thermostability at 80°C, was very stable with surfactants, commercial detergents as well as with oxidizing agents (H2O2, NaBO3H2O and NaClO). Lip.nr-22 as additive in detergent formulation is a promise for better detergent formulation.


1997 ◽  
Vol 127 (3) ◽  
pp. 292-299 ◽  
Author(s):  
Yukiko Hanzawa ◽  
Daisuke Hiroishi ◽  
Chihiro Matsuura ◽  
Kenkichi Ishigure ◽  
Masashi Nagao ◽  
...  

Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 367 ◽  
Author(s):  
Laura Sáez ◽  
Eoin Murphy ◽  
Richard J. FitzGerald ◽  
Phil Kelly

Tryptic hydrolysis of whey protein isolate under specific incubation conditions including a relatively high enzyme:substrate (E:S) ratio of 1:10 is known to preferentially hydrolyse β-lactoglobulin (β-LG), while retaining the other major whey protein fraction, i.e., α-lactalbumin (α-LA) mainly intact. An objective of the present work was to explore the effects of reducing E:S (1:10, 1:30, 1:50, 1:100) on the selective hydrolysis of β-LG by trypsin at pH 8.5 and 25 °C in a 5% (w/v) WPI solution during incubation periods ranging from 1 to 7 h. In addition, the use of a pilot-scale continuous high-temperature, short-time (HTST) heat exchanger with an extended holding time (EHT) of 5 min as a means of inactivating trypsin to terminate hydrolysis was compared with laboratory-based acidification to <pH 3 by the addition of HCl, and batch sample heating in a water bath at 85 °C. An E:S of 1:10 resulted in 100% and 30% of β-LG and α-LA hydrolysis, respectively, after 3 h, while an E:S reduction to 1:30 and 1:50 led >90% β-LG hydrolysis after respective incubation periods of 4 and 6 h, with <5% hydrolysis of α-LA in the case of 1:50. Continuous HTST-EHT treatment was shown to be an effective inactivation process allowing for the maintenance of substrate selectivity. However, HTST-EHT heating resulted in protein aggregation, which negatively impacts the downstream recovery of intact α-LA. An optimum E:S was determined to be 1:50, with an incubation time ranging from 3 h to 7 h leading to 90% β-LG hydrolysis and minimal degradation of α-LA. Alternative batch heating by means of a water bath to inactivate trypsin caused considerable digestion of α-LA, while acidification to <pH 3.0 restricted subsequent functional applications of the protein.


Weed Science ◽  
1970 ◽  
Vol 18 (5) ◽  
pp. 604-607 ◽  
Author(s):  
Roy Y. Yih ◽  
Colin Swithenbank ◽  
D. Harold McRae

Transformation of N-(1,1-dimethylpropynyl)-3,5-dichlorobenzamide (compound I) in soil occurs readily and two products are produced, initial cyclization giving 2-(3,5-dichlorophenyl)-4,4-dimethyl-5-methyleneoxazoline (compound II) followed by subsequent hydrolysis to N-(1,1-dimethylacetonyl)-3,5-dichlorobenzamide (compound III). These transformations can be brought aboutin vitro, the first step by means of acid or base, and the second by extended treatment with acid. The rate of cyclization and hydrolysis of compound I varies directly with soil temperature, being rapid at high temperature (37 C) and very slow at low temperature (5 C). The rate of chemical change of compound I in soil is influenced to a much greater degree by temperature than by soil moisture content. The effect of soil type on transformation of compound I was studied and compounds II and III were present in five of the six soils examined. The herbicidal activity of compounds II and III was negligible in comparison to compound I.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 333 ◽  
Author(s):  
Yifan Chen ◽  
Qian Li ◽  
Yujie Li ◽  
Qijun Zhang ◽  
Jingda Huang ◽  
...  

In this work, cellulose nanocrystals (CNCs) obtained by the acid hydrolysis of waste bamboo powder were used to synthesize cellulose nanocrystal-g-poly(acrylic acid-co-acrylamide) (CNC-g-P(AA/AM)) aerogels via graft copolymerization followed by freeze-drying. The structure and morphology of the resulting aerogels were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), and the CNC-g-P(AA/AM) aerogels exhibited excellent absorbent properties and adsorption capacities. Subsequent Pb(II) adsorption studies showed that the kinetic data followed the pseudo-second-order equation, while the adsorption isotherms were best described using the Langmuir model. The maximum Pb(II) adsorption capacity calculated by the Langmuir model reached up to 366.3 mg/g, which is a capacity that outperformed that of the pure CNC aerogel. The CNC-g-P (AA/AM) aerogels become structurally stable through chemical cross-linking, which enabled them to be easily regenerated in HCl solution and retain the adsorption capacity after repeated use. The aerogels were found to maintain 81.3% removal efficiency after five consecutive adsorption–desorption cycles. Therefore, this study demonstrated an effective method for the fabrication of an aerogel adsorbent with an excellent reusability in the effective removal of Pb(II) from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document