Late-Glacial and Holocene Glacier Fluctuations and Environmental Change on South Georgia, Southern Ocean

1989 ◽  
Vol 31 (2) ◽  
pp. 210-228 ◽  
Author(s):  
Chalmers M. Clapperton ◽  
David E. Sugden ◽  
Jacqueline Birnie ◽  
Mandy J. Wilson

AbstractSouth Georgia provides a terrestrial record of postglacial environmental change from a largely oceanic zone of the Earth. The record is representative of the southern westerlies and provides a link between Antarctica and the temperate zones of southern South America. Evidence from glacial geomorphology, slope stratigraphy, and analyses of environmental indicators in peat and lake cores is used to interpret this record. Wastage of the full-glacial ice cap was interrupted by a late-glacial stade of the outlet and valley glaciers before ca. 10,000 yr B.P. Plant growth had begun at low altitude (<50 m) on the sheltered (lee side) northeast coast within the late-glacial moraine limits by 9700 yr B.P. Environmental conditions on slopes above 80 m probably were too rigorous for a stable vegetation cover until ca. 6400 yr B.P. This was followed by a period from 5600 to 4800 yr B.P. when conditions were warmer than at present by up to 0.6°C. Periods of climatic cooling occurred at ca. 4800-3800 yr B.P., ca. 3400-1800 yr B.P., and within the last 1400 yr. The most extensive Holocene advance of South Georgia glaciers culminated just before 2200 yr B.P. These Holocene temperature changes of between 0.5 and 1.0°C are comparable in scale and timing to those identified from recent analyses of Vostok ice cores from the Antarctic ice sheet.

2018 ◽  
Vol 91 (1) ◽  
pp. 132-148 ◽  
Author(s):  
Sonja Berg ◽  
Duanne A. White ◽  
Sandra Jivcov ◽  
Martin Melles ◽  
Melanie J. Leng ◽  
...  

AbstractThe subantarctic island of South Georgia provides terrestrial and coastal marine records of climate variability, which are crucial for the understanding of the drivers of Holocene climate changes in the subantarctic region. Here we investigate a sediment core (Co1305) from a coastal inlet on South Georgia using elemental, lipid biomarker, diatom, and stable isotope data to infer changes in environmental conditions and to constrain the timing of late-glacial and Holocene glacier fluctuations. Because of the scarcity of terrestrial macrofossils and the presence of redeposited and relict organic matter in the sediments, age control for the record was obtained by compound-specific radiocarbon dating of mostly marine-derived n-C16 fatty acids. A basal till layer recovered in Little Jason Lagoon was likely deposited during an advance of local glaciers during the Antarctic cold reversal. After glacier retreat, an oligotrophic lake occupied the site, which transitioned to a marine inlet around 8.0±0.9 ka because of relative sea-level rise. From 7.0±0.6 to 4.0±0.4 ka, reduced vegetation coverage in the catchment, as well as high siliciclastic input and deposition of ice-rafted debris, indicates glacier advances in the terrestrial catchment and likely in the adjacent fjord. A second, less extensive period of glacier advances occurred in the late Holocene, after 1.8±0.3 ka.


2020 ◽  
pp. 1-13
Author(s):  
Joanna Charton ◽  
Vincent Jomelli ◽  
Irene Schimmelpfennig ◽  
Deborah Verfaillie ◽  
Vincent Favier ◽  
...  

Abstract Debris-covered glaciers constitute a large part of the world's cryosphere. However, little is known about their long-term response to multi-millennial climate variability, in particular in the Southern Hemisphere. Here, we provide first insights into the response of a debris-covered glacier to multi-millennial climate variability in the sub-Antarctic Kerguelen Archipelago, which can be compared to that of recently investigated debris-free glaciers. We focus on the Gentil Glacier and present 13 new 36Cl cosmic-ray exposure ages from moraine boulders. The Gentil Glacier experienced at least two glacial advances: the first one during the Late Glacial (19.0–11.6 ka) at ~14.3 ka and the second one during the Late Holocene at ~2.6 ka. Both debris-covered and debris-free glaciers advanced broadly synchronously during the Late Glacial, most probably during the Antarctic Cold Reversal event (14.5–12.9 ka). This suggests that both glacier types at Kerguelen were sensitive to abrupt temperature changes recorded in Antarctic ice cores, associated with increased moisture. However, during the Late Holocene, the advance at ~2.6 ka was not observed in other glaciers and seems to be an original feature of the debris-covered Gentil Glacier, related to either distinct dynamics or to distinct sensitivity to precipitation changes.


2021 ◽  
Author(s):  
Henk Cornelissen ◽  
William Fletcher ◽  
Philip Hughes ◽  
Benjamin Bell ◽  
Ali Rhoujjati ◽  
...  

&lt;p&gt;The High Atlas mountains of Morocco represent a climatological frontier between the Atlantic and Saharan realms as well as a site of major Pleistocene glacier expansion. However, Late-glacial and Holocene environmental change is weakly constrained, leaving open questions about the influence of high- and low-latitude climate forcing and the expression of North Atlantic rapid climate changes. High elevation lakes on the sandstone plateaux of the High Atlas have been recognised as archives of Late Quaternary environmental change but remain little explored. Here, we present findings from new sedimentological, palaeoecological and geochronological investigation of a lake marginal sediment core recovered in June 2019 from the &lt;em&gt;Ifard &lt;/em&gt;Lake located on the Yagour Plateau. The plateau is a distinctive sandstone upland located to the southeast of Marrakech in the High Atlas (31.31&amp;#176;N, 7.60&amp;#176;W, 2460 m.a.s.l.). The lake is located within a small, perched catchment area, offering an opportunity to isolate catchment effects and investigate atmospheric deposition of organic and inorganic tracers of past environmental change. The core stratigraphy reveals shifts between inorganic sands and lake muds with fluctuations in grain sizes and sediment reddening. The differences in these stratigraphic layers are most likely linked to hydrological changes associated with changing snowpack conditions and local catchment erosion dynamics. The core chronology is well-constrained by AMS radiocarbon dating of pollen concentrates, with the core sequence spanning the last ca. 14,000 years. The driving agents of environmental change on the plateau are inferred using a multiproxy approach, combining sedimentological analyses (particle-size by laser granulometry, elemental analysis by core-scanning XRF, C/H/N/S analysis), palynology (pollen, spores, non-pollen palynomorphs) and contiguous macrocharcoal analysis. High-resolution, well-constrained proxies therefore permit novel regional insights into past environmental and climatic changes at centennial timescales. A prime working hypothesis is that the imprint of wider palaeoclimatic changes of both the North Atlantic region and Saharan realm (African Humid Period, AHP) is detected at this site. Key climatic periods such as the Younger Dryas and multi-centennial cooling episodes around 8000 and 4200 years ago are distinctly characterised in the record by finer grain sizes and the accumulation of pollen-rich material and charcoal. These responses are thought to be governed by regional climate forcing and local snowmelt moisture supply to the Yagour Plateau. An increase in fine sediment supply, magnetic susceptibility and Fe content in the upper part of the core may be related to enhanced atmospheric dust deposition following the end of the AHP. Whilst taking anthropological influences on the local environment into account, this study will contribute to the detection of long-term and rapid climate changes in a sensitive mountain region at the rim of the Atlantic and Saharan climate systems.&lt;/p&gt;


2013 ◽  
Vol 80 (2) ◽  
pp. 291-315 ◽  
Author(s):  
Ronald J. Litwin ◽  
Joseph P. Smoot ◽  
Milan J. Pavich ◽  
Helaine W. Markewich ◽  
George Brook ◽  
...  

We document frequent, rapid, strong, millennial-scale paleovegetation shifts throughout the late Pleistocene, within a 100,000+ yr interval (~ 115–15 ka) of terrestrial sediments from the mid-Atlantic Region (MAR) of North America. High-resolution analyses of fossil pollen from one core locality revealed a continuously shifting sequence of thermally dependent forest assemblages, ranging between two endmembers: subtropical oak-tupelo-bald cypress-gum forest and high boreal spruce-pine forest. Sedimentary textural evidence indicates fluvial, paludal, and loess deposition, and paleosol formation, representing sequential freshwater to subaerial environments in which this record was deposited. Its total age"depth model, based on radiocarbon and optically stimulated luminescence ages, ranges from terrestrial oxygen isotope stages (OIS) 6 to 1. The particular core sub-interval presented here is correlative in trend and timing to that portion of the oxygen isotope sequence common among several Greenland ice cores: interstades GI2 to GI24 (≈ OIS2–5 d). This site thus provides the first evidence for an essentially complete series of "Dansgaard"Oeschger" climate events in the MAR. These data reveal that the ~ 100,000 yr preceding the Late Glacial and Holocene in the MAR of North America were characterized by frequently and dynamically changing climate states, and by vegetation shifts that closely tracked the Greenland paleoclimate sequence.


2004 ◽  
Vol 62 (3) ◽  
pp. 267-279 ◽  
Author(s):  
Matt S. McGlone ◽  
Chris S.M. Turney ◽  
Janet M. Wilmshurst

Lithology, pollen, macrofossils, and stable carbon isotopes from an intermontane basin bog site in southern New Zealand provide a detailed late-glacial and early Holocene vegetation and climate record. Glacial retreat occurred before 17,000 cal yr B.P., and tundra-like grassland"shrubland occupied the basin shortly after. Between 16,500 and 14,600 cal yr B.P., a minor regional expansion of forest patches occurred in response to warming, but the basin remained in shrubland. Forest retreated between 14,600 and 13,600 cal yr B.P., at about the time of the Antarctic Cold Reversal. At 13,600 cal yr B.P., a steady progression from shrubland to tall podocarp forest began as the climate ameliorated. Tall, temperate podocarp trees replaced stress-tolerant shrubs and trees between 12,800 and 11,300 cal yr B.P., indicating sustained warming during the Younger Dryas Chronozone (YDC). Stable isotopes suggest increasing atmospheric humidity from 11,800 to 9300 cal yr B.P. Mild (annual temperatures at least 1°C higher than present), and moist conditions prevailed from 11,000 to 10,350 cal yr B.P. Cooler, more variable conditions followed, and podocarp forest was completely replaced by montane Nothofagus forest at around 7500 cal yr B.P. with the onset of the modern climate regime. The Cass Basin late-glacial climate record closely matches the Antarctic ice core records and is in approximate antiphase with the North Atlantic.


1990 ◽  
Vol 14 ◽  
pp. 288-297 ◽  
Author(s):  
L.G. Thompson ◽  
E. Mosley-Thompson ◽  
M.E. Davis ◽  
J.F. Bolzan ◽  
J. Dai ◽  
...  

The first ice-core record of both the Holocene and Wisconsin/Würm Late Glacial Stage (LGS) from the subtropics has been extracted from three ice cores to bedrock from the Dunde ice cap on the north-central Qinghai-Tibetan Plateau. Ice thicknesses at the ice-cap summit average 138 m, the bedrock surface is relatively flat, surface and basal temperatures are −7.3 and −4.7°C, respectively and the ice cap exhibits radial flow away from the summit dome. These records reveal a major change in the climate of the plateau ∼10 000 years ago and suggest that LGS conditions were colder, wetter and dustier than Holocene conditions. This is inferred from the more negative δ18O ratios, increased dust content, decreased soluble aerosol concentrations, and reduced ice-crystal sizes, which characterize the LGS part of the cores. Total β radioactivity from shallow ice cores indicates that over the last 24 years the average accumulation rate has been ∼400 mm a−1 at the summit. The ice cores have been dated using a combination of annual layers in the insoluble dust and δ18O in the upper sections of core, visible dust layers which are annual, and ice-flow modeling. The oxygen-isotope record which serves as a temperature proxy indicates that the last 60 years have been the warmest in the entire record.


1982 ◽  
Vol 3 ◽  
pp. 27-31 ◽  
Author(s):  
M. Briat ◽  
A. Royer ◽  
J. R. Petit ◽  
C. Lorius

399 individual microparticles in nine samples from the Dome C ice core were studied under scanning electron microscope and analysed by an energy dispersive X-ray system. The studied particles were either continental quartz or various silico-aluminates of continental or volcanic origin. Observations lead to the conclusion that the increase in micro particle concentration by a factor of 10 to 20 during the last glacial stage is explained by a large input of continental dust, as already indicated by trace element analysis (Petit and others 1981) and previously suggested by chemical analysis of other polar ice cores (Cragin and others 1977).This increase is considered to be a consequence of the ice-age climate and earth surface conditions which were characterized by the increase of arid regions and more vigorous atmospheric circulation. Both these conclusions are further supported by the existence of a higher quartz content in the Antarctic ice core as was already found in tropical deep-sea core studies.


Sign in / Sign up

Export Citation Format

Share Document